matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisnochmal Quotientenregel
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Schul-Analysis" - nochmal Quotientenregel
nochmal Quotientenregel < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nochmal Quotientenregel: Frage
Status: (Frage) beantwortet Status 
Datum: 21:18 So 24.10.2004
Autor: Lucie

Hallo, also das ist jetzt doch ganz schön blöd, weil eigentlich liegt mein Problem nichtwirklich bei der Quotientenregel, sondern beim ausrechnen von Termen allgemein :) Kann ich leider immer noch nicht und so ergibt sich folgendes Problem:

t-t³
t²+1

ergibt bei mir  
[mm] [u]t³-3t^{5}+t-5t²-2t^{4} [/mm] [/u]
[mm] t^{4} [/mm] +2t²+1

und das kommt mir nicht so richtig vor,
Gruß Lucie

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
nochmal Quotientenregel: Nachfrage
Status: (Antwort) fertig Status 
Datum: 22:11 So 24.10.2004
Autor: informix

Hallo Lucie,
> Hallo, also das ist jetzt doch ganz schön blöd, weil
> eigentlich liegt mein Problem nichtwirklich bei der
> Quotientenregel, sondern beim ausrechnen von Termen
> allgemein :) Kann ich leider immer noch nicht und so ergibt
> sich folgendes Problem:
>  
> t-t³
>  t²+1
>  
> ergibt bei mir  
> [mm][u]t³-3t^{5}+t-5t²-2t^{4}[/mm][/u]

[mm]t^{4}[/mm] +2t²+1

und das kommt mir nicht so richtig vor,
.. mir auch nicht ..
Soll der zweite Term die Ableitung des ersten sein?! Dann ist das falsch.
Lies mal unter MBQuotientenregel in unserer Mathebank.
Vielleicht schreibst du mal einige Zwischenschritte auf, damit wir sehen können, wo du nicht richtig rechnest.
Und benutze doch bitte unseren Formeleditor, um die Brüche darzustellen: [mm] $\bruch{t-t^3}{t^2+1}$ [/mm]


Bezug
                
Bezug
nochmal Quotientenregel: Zwischenschritte
Status: (Frage) beantwortet Status 
Datum: 17:42 Mo 25.10.2004
Autor: Lucie

also ich hab jetzt die aufgabe nochmal gerechnet und komm auf folgendes:

t-t³
t²+1

f'(t)=  -3t²*(t²+1)-(t-t³)*2t
          [mm] 2t^{4}+2t²+1 [/mm]


f'(t)= [mm] [u]-4t^{4} [/mm] - 3t²- 2t²- [mm] 2t^{4}[/u] [/mm]
         [mm] 2t^{4}+2t²+1 [/mm]

f'(t)= [mm] [u]-6t^{4} [/mm] - 5t²[/u]
         [mm] 2t^{4}+2t²+1 [/mm]

stimmt das denn jetzt so? Ich bin eher ziemlich sicher dass das so nicht funktioniert wie ich das mache?
Danke für die Hilfe, Gruß Lucie

Bezug
                        
Bezug
nochmal Quotientenregel: unterstreichen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:44 Mo 25.10.2004
Autor: Lucie

ich weiß nicht warum das mít dem unterstreichen nicht immer klappt?! aber die letzten beiden darstellungen sollen schon auch brüche sein

Bezug
                        
Bezug
nochmal Quotientenregel: Fehler gefunden (?)
Status: (Antwort) fertig Status 
Datum: 18:11 Mo 25.10.2004
Autor: Bastiane

Hallo Lucie!
Also erstmal zu dem Unterstreichen: warum willst du das unterstreichen? Du kannst doch einfach einen Bruch erstellen... Aber ich weiß ja, was du meinst. ;-)

> also ich hab jetzt die aufgabe nochmal gerechnet und komm
> auf folgendes:
>  
> t-t³
>  t²+1
>  
> f'(t)=  -3t²*(t²+1)-(t-t³)*2t
>            [mm]2t^{4}+2t²+1 [/mm]

Ich glaube, da fehlt eine 1 ganz am Anfang des Zählers - ich komme da auf:
f'(t) = [mm] \bruch{(1-3t^2)(t^2+1)-(t-t^3)(2t)}{t^4+2t^2+1} [/mm]
Demnach ist auch der Nenner nicht mehr richtig - ich glaube, bei deiner ersten Rechnung war das besser...

Wenn man das dann ausrechnet, kommt da bei mir folgendes raus:
Im Zähler steht dann: [mm] -t^4-4t^2+1 [/mm] und im Nenner kannst du eigentlich [mm] (t^2+1)^2 [/mm] stehen lassen (das ist übersichtlicher, als es auszumultiplizieren).
Keine 100%ige Garantie für Richtigkeit, aber probier's doch nochmal so.
Viele Grüße :-)




Bezug
                                
Bezug
nochmal Quotientenregel: Frage
Status: (Frage) beantwortet Status 
Datum: 20:04 Mo 25.10.2004
Autor: Lucie

das hieß dann, dass t abgeleitet 1 ergibt oder?
also wenn bei meiner rechnung eine 1 am anfang fehlt?!



Bezug
                                        
Bezug
nochmal Quotientenregel: Bestätigung
Status: (Antwort) fertig Status 
Datum: 22:42 Mo 25.10.2004
Autor: informix

Hallo Lucie,
> das hieß dann, dass t abgeleitet 1 ergibt oder?
>  also wenn bei meiner rechnung eine 1 am anfang fehlt?!

natürlich ;-)
Du leitest doch nach t ab.
Das ist genau so wie beim Ableiten nach x!

Ergebnis also: [mm] $-\bruch{t^4+4t^2-1}{(t^2+1)^2}$ [/mm]
wie bei Bastiane - danke für Nachrechnen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]