matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungSchwieriges Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - Schwieriges Integral
Schwieriges Integral < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schwieriges Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:00 Fr 09.01.2009
Autor: tunetemptation

Hallo,
habe folgende aufgabe:

[mm] \integral_{f(x) dx} \wurzel{2x}*cos\wurzel{x} [/mm]

Gut klarer Fall part. Int.
Habe dann :

[mm] \wurzel{2x}*2(\wurzel{x}*sin(\wurzel{x})+cos(\wurzel{x}))-\integral_{f(x) dx}\bruch{1}{\wurzel{2x}}*2(\wurzel{x}*sin(\wurzel{x})+cos(\wurzel{x})) [/mm]
Bei dem rechten Integral dann zusammenfassen und wieder part int. oder [mm] 2(\wurzel{x}*sin(\wurzel{x})+cos(\wurzel{x})) [/mm] subst?
Habe ersteres gemacht und dass wird eine endlosrechnung. War eine Prüfungsaufgabe, also kann die nicht soviel zeit in anspruch nehmen. Gibt es hier einen trick ?

Habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Schwieriges Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:08 Fr 09.01.2009
Autor: schachuzipus

Hallo tunetemptation,

> Hallo,
>  habe folgende aufgabe:
>  
> [mm]\integral_{f(x) dx} \wurzel{2x}*cos\wurzel{x}[/mm]
>  
> Gut klarer Fall part. Int.
>  Habe dann :
>  
> [mm]\wurzel{2x}*2(\wurzel{x}*sin(\wurzel{x})+cos(\wurzel{x}))-\integral_{f(x) dx}\bruch{1}{\wurzel{2x}}*2(\wurzel{x}*sin(\wurzel{x})+cos(\wurzel{x}))[/mm]
>  
> Bei dem rechten Integral dann zusammenfassen und wieder
> part int. oder
> [mm]2(\wurzel{x}*sin(\wurzel{x})+cos(\wurzel{x}))[/mm] subst?
>  Habe ersteres gemacht und dass wird eine endlosrechnung.
> War eine Prüfungsaufgabe, also kann die nicht soviel zeit
> in anspruch nehmen. Gibt es hier einen trick ?

Ich würde vorab substituieren, [mm] $u:=\sqrt{x}$ [/mm]

Damit kommst du auf [mm] $\int{\sqrt{2x}\cdot{}\cos(\sqrt{x}) \ dx} [/mm] \ = \ [mm] 2\sqrt{2}\int{u^2\cdot{}\cos(u) \ du}$ [/mm]

Hier nun 2mal partiell integrieren

>  
> Habe diese Frage in keinem anderen Forum gestellt.


LG

schachuzipus

Bezug
                
Bezug
Schwieriges Integral: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:20 Fr 09.01.2009
Autor: tunetemptation

Hallo, wenn ich mit Wurzel 2 sub bekomme ich aber

[mm] \wurzel{2}\integral_{f(x) du}u*cos(u) [/mm]

Bezug
                        
Bezug
Schwieriges Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 Fr 09.01.2009
Autor: tunetemptation

Sorry ,mit Wurzel x subs.

Bezug
                                
Bezug
Schwieriges Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 Fr 09.01.2009
Autor: tunetemptation

Was meinst du dazu?

Bezug
                        
Bezug
Schwieriges Integral: vorrechnen!
Status: (Antwort) fertig Status 
Datum: 15:27 Fr 09.01.2009
Autor: Loddar

Hallo tunetemptation!


> Hallo, wenn ich mit Wurzel 2 sub bekomme ich aber
> [mm]\wurzel{2}\integral_{f(x) du}u*cos(u)[/mm]  

Dann rechne es doch mal vor. Schließlich funktioniert das genauso wie hier.


Gruß
Loddar


Bezug
                                
Bezug
Schwieriges Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:31 Fr 09.01.2009
Autor: tunetemptation

Also wenn ich [mm] \wurzel{2*x}*cos(\wurzel{x} [/mm] mit [mm] u=\wurzel{x} [/mm] subs. dann erhalte ich doch

[mm] \wurzel{2}*\wurzel{x}*cos(\wurzel{x} [/mm]
Einsetzten ist [mm] \wurzel{2}*u*cos(u) [/mm]
also: [mm] \wurzel{2}\integral_{f(x) du}u*cos(u) [/mm]
Oder bin ich da falsch ?


Bezug
                                        
Bezug
Schwieriges Integral: Was ist mit dx?
Status: (Antwort) fertig Status 
Datum: 15:34 Fr 09.01.2009
Autor: Loddar

Hallo tunetemptation!


Und was ist mit dem $dx_$ , welches Du noch in $du_$ "umwandeln" musst?


Gruß
Loddar


Bezug
                                                
Bezug
Schwieriges Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Fr 09.01.2009
Autor: tunetemptation

Ah sch... ja stimmt ich subs. hier nach den Integrationsregeln.
Okay, und wenn ich dann [mm] \integral_{f(x) du}u^2*cos(u) [/mm] habe warum dann zweil mal integrieren?

Ist doch [mm] \bruch{2*u*cos(u)}{1^2}+\bruch{(1^2*u^2-2)*sin(u)}{1^3} [/mm]
laut FS. Oder wurde hier bereits 2 mal part integ. ?

Danke

Bezug
                                                        
Bezug
Schwieriges Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Fr 09.01.2009
Autor: fred97


> Ah sch... ja stimmt ich subs. hier nach den
> Integrationsregeln.
>  Okay, und wenn ich dann [mm]\integral_{f(x) du}u^2*cos(u)[/mm] habe
> warum dann zweil mal integrieren?
>  
> Ist doch
> [mm]\bruch{2*u*cos(u)}{1^2}+\bruch{(1^2*u^2-2)*sin(u)}{1^3}[/mm]
>  laut FS. Oder wurde hier bereits 2 mal part integ. ?


Natürlich, oder meinst Du das fällt vom Himmel ?

FRED



>  
> Danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]