matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungNormalenvektor Abstand Punkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Normalenvektor Abstand Punkt
Normalenvektor Abstand Punkt < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalenvektor Abstand Punkt: Frage
Status: (Frage) beantwortet Status 
Datum: 22:29 Mi 25.05.2005
Autor: hase-hh

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt.

Moin, moin,

habe folgendes Problem:

Aufgabe

E: x -> (0/1/0) + s (2/1/0) + t (0/1/1)


a) Gib eine Normalengleichung von E an!


n ° (2/1/1) = 0    und   n ° (0/1/1) = 0

2n1 + n2 = 0       und   n2 + n3 = 0

n1 = - 1/2 n2       und   n3 = -n2


setze n2 = -2


=>  n1=1 ; n2=-2; n3=2

n = (1/-2/2)


Normalengleichung:

n ° (x - a) = 0  

n ° x - n ° a = 0


(1/-2/2) ° x - (1/-2/2)°(0/1/0) = 0


=> x1 - 2x2 + 2x3 + 2 = 0


b) zeige, dass die gerade g durch A (4(3/6,5) mit dem Richtungsvektor (2/0/-1) parallel zu E ist.


g :  x -> (4/3/6,5) + s (2/0/1)


für g II E  gilt  u ° n = (2(0/1) ° (1/-2/2) = 2-0-2 = 0   d.h. g II E

1. Frage: Ist die Untersuchung  "g c E"  eine alternative Lösungsmöglichkeit?

Verstehe den Ansatz nicht ganz... => ???

n ° (x-a) = (1/-2/2) ° (4/3/6,5) - (1/-2/2) ° (2/0/-1) ) = 4 - 6 + 13 -2 +2 = 11

[korrekt?]  

1.1. Frage:
ist also nicht null, würde doch für einen schnittpunkt sprechen oder???


c) berechne den abstand der geraden g zu E! [bzw. von A € g zu E]

I n I = wurzel (1*1 + (-2)*(-2) + 2*2) = 3


2. Frage:
Warum ist das denn jetzt nicht der Abstand zwischen g und E?
Was muss ich tun?


3. Frage
Wie bestimme ich die Koordinaten des Punktes, wo der Normalenvektor "aufhört"?


Vielen Dank für Eure Hilfe!!!


gruss
wolfgang
















        
Bezug
Normalenvektor Abstand Punkt: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Mi 25.05.2005
Autor: Max

Hallo Wolfgang,

dir ein herzliches
[willkommenmr]

Schade, dass du noch nicht unseren Formeleditor benutzt hast, weil dadurch deine Fragen nicht ganz so leicht zu verstehen sind.

Nun dazu:


> a) Gib eine Normalengleichung von E an!
>  
>
> n ° (2/1/1) = 0    und   n ° (0/1/1) = 0
>  
> 2n1 + n2 = 0       und   n2 + n3 = 0
>  
> n1 = - 1/2 n2       und   n3 = -n2
>  
>
> setze n2 = -2
>
>
> =>  n1=1 ; n2=-2; n3=2

>  
> n = (1/-2/2)
>  
>
> Normalengleichung:
>  
> n ° (x - a) = 0  
>
> n ° x - n ° a = 0
>  
>
> (1/-2/2) ° x - (1/-2/2)°(0/1/0) = 0
>  
>
> => x1 - 2x2 + 2x3 + 2 = 0

[ok]


> b) zeige, dass die gerade g durch A (4(3/6,5) mit dem
> Richtungsvektor (2/0/-1) parallel zu E ist.
>  
>
> g :  x -> (4/3/6,5) + s (2/0/1)
>  
>
> für g II E  gilt  u ° n = (2(0/1) ° (1/-2/2) = 2-0-2 = 0  
> d.h. g II E

[ok]

  

> 1. Frage: Ist die Untersuchung  "g c E"  eine alternative
> Lösungsmöglichkeit?

Ja, wobei du dann erwartest, dass entweder $g [mm] \cap E=\{\}$ [/mm] also echt parallel oder $g [mm] \cap [/mm] E = g$ also ist die Gerade vollständig enthalten in E.

  

> Verstehe den Ansatz nicht ganz... => ???
>  
> n ° (x-a) = (1/-2/2) ° (4/3/6,5) - (1/-2/2) ° (2/0/-1) ) =
> 4 - 6 + 13 -2 +2 = 11
>  
> [korrekt?]  

Hier wird doch nur noch überprüft, ob der Stützvektor/Aufpunkt selbst zu Ebene $E$ gehört um zu entscheiden, ob die Gerade vollständig enthalten oder echt parallel ist.


> 1.1. Frage:
>  ist also nicht null, würde doch für einen schnittpunkt
> sprechen oder???

Nein, da $11=11$ ist [mm] $\vec{a}\in [/mm] E$.



> c) berechne den abstand der geraden g zu E! [bzw. von A € g
> zu E]
>  
> I n I = wurzel (1*1 + (-2)*(-2) + 2*2) = 3

[ok]


> 2. Frage:
>  Warum ist das denn jetzt nicht der Abstand zwischen g und
> E?
>  Was muss ich tun?


Du hast gerade nur die Länge deines gewählten Normalenvektors bestimmt. Du erinnerst dich, du hast einfach [mm] $n_3=2$ [/mm] gesetzt, hättest du dort [mm] $n_3=200$ [/mm] gestetzt, hätte er jetzt die Länge $300$. Also kann das nicht der Abstand sein....



> 3. Frage
>  Wie bestimme ich die Koordinaten des Punktes, wo der
> Normalenvektor "aufhört"?

Leg doch eine orthogonale Gerade zu $E$ durch $A$. Der Abstand von $A$ zum Durchstosspunkt ist die Entfernung zwischen $A$ und $E$.

Gruß Max

>
>
>
>
>
>
>
>
>
>
>
>
>  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]