matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Startseiteinvertierbares_Element
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
invertierbares_Element
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

invertierbares Element

!!Definition ''invertierbares Element'


Schule


Universität

Es sei $ (H, \circ) $ eine Halbgruppe mit neutralem Element $ e $.

Ein Element $ a \in H $ heißt linksinvertierbar (bzw. rechtsinvertierbar), wenn es ein $ b \in H $ gibt mit

$ b \circ a =e $  (bzw. $ a \circ b=e $).

Das Element $ b $ heißt ein Linksinverses (bzw. Rechtsinverses) von $ a $.

Ein Element aus $ H $ heißt __invertierbar __, wenn es sein Links- und ein Rechtsinverses besitzt.


Beispiele

1) In der Halbgruppe $ (E(X),\circ) $ aller Abbildungen von $ X $ in sich sind die linksinvertierbaren Elemente genau die injektiven Abbildungen und die rechtsinvertierbaren Elemente genau die surjektiven Abbildungen (und damit die invertierbaren Elemente genau die bijektiven Abbildungen).

Sei $ f:X \to X $ injektiv, dann prüft man sofort nach, dass $ g:X \to X $, definiert durch

$ g(y):= \left\{ \begin{array}{cccc} y & , & \mbox{\scriptsize falls} &  y \in X \setminus f(X),\\[5pt] x & , & \mbox{\scriptsize falls} & y=f(x), \end{array} \right. $

ein Linksinverses von $ f $ ist. Besitzt umgekehrt $ f $ ein Linksinverses $ g $, $ g \circ f = Id_X $, dann folgt aus $ f(x) = f(y) $ durch Anwendung von $ g $

$ x = Id_X(x) = (g \circ f)(x) = g(f(x)) = g(f(y)) = (g \circ f)(y) = y $,

also ist $ f $ injektiv.

Nun sei $ f : X \to X $ surjektiv. Dann ist jede Urbildmenge

$ f^{-1}(\{x\}) = \{y \in X\, \vert\, f(y)=x\} $

nicht leer und wir können aus jeder dieser Mengen ein Element $ y=y(x) $ auswählen (Auswahlaxiom). Es definiert $ x \mapsto y(x) $ eine Abbildung, sie werde mit $ h $ bezeichnet, für die definitionsgemäß gilt:

$ (f \circ h)(x) = f(y(x)) = x $,

d.h. $ f \circ h= Id_X $.

Haben wir umgekehrt eine Abbildung $ h:X \to X $ mit $ f \circ h=Id_X $, dann gibt es zu jedem Element $ x \in X $ ein Element $ y \in X $, nämlich $ y=h(x) $, so dass gilt:

$ x=(f \circ h)(x) = f(y) $;

d.h. $ f $ ist surjektiv.

2) Wir wollen die invertierbaren Elemente in $ (\IZ_n,+) $ und $ (\IZ_n,\cdot) $ bestimmen:

Wegen

$ \overline{x} + \overline{-x} = \overline{x-x} = \overline{0} = \overline{-x} + \overline{x} $

ist in $ (\IZ_n,+) $ jedes Element invertierbar.

Nun sei $ x \in \IZ_n $ in $ (\IZ_n,\cdot) $ invertierbar, d.h. es gibt ein $ y \in \IZ $ mit

$ \overline{x} \cdot \overline{y} = \overline{xy} = \overline{1} \ (=\overline{y} \cdot \overline{x}) $.

Dies bedeutet:

$ xy-1 = nm $  für ein $ m \in \IZ $.

Also:

$ \overline{x} $ in $ (\IZ_n, \cdot) $ invertierbar

$ \Leftrightarrow $  Es gibt $ y,\, m \in \IZ $ mit $ 1=xy+nm $

$ \Leftrightarrow $  $ x $ und $ n $ sind teilerfremd.

(Die letzte Äquivalenz ist die Aussage das Lemmas von Bézout.)

Ist $ n=p $ eine Primzahl, so folgt insbesondere, dass jedes Element $ \ne \overline{0} $ in $ (\IZ_p,\cdot) $ invertierbar ist.


Quelle: K. Meyberg, Algebra Teil 1, Carl Hanser Verlag, 1980, ISBN 3-446-13079-9

Erstellt: So 31.07.2005 von Stefan
Letzte Änderung: So 31.07.2005 um 21:30 von Stefan
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]