matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteTopologie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Topologie
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Topologie

Definition Topologie


Universität

1.) Sei $ X $ eine Menge. Ein Mengensystem $ \mathcal{T}\subset \mathcal{P}(X) $ heißt Topologie (auf $ X $) genau dann, wenn die folgenden Bedingungen $ (\mathcal{T}1.) $ bis $ (\mathcal{T}4.) $ erfüllt sind:
$ (\mathcal{T}1.) $ $ \emptyset \in \mathcal{T} $
$ (\mathcal{T}2.) $ $ X \in \mathcal{T} $
$ (\mathcal{T}3.) $ $ \forall A,B \in \mathcal{T} $ gilt: $ A \cap B \in \mathcal{T} $ (d.h. $ \mathcal{T} $ ist durchschnittsstabil!)
$ (\mathcal{T}4.) $ Ist $ I $ irgendeine Indexmenge und sind $ A_{\alpha} \in \mathcal{T} $ ($ \forall \alpha \in I $) so gilt:
$ \bigcup_{\alpha \in I}A_{\alpha} \in \mathcal{T} $ (d.h., $ \mathcal{T} $ ist stabil unter Vereinigungen).

Das Paar $ (X,\mathcal{T}) $ heißt dann topologischer Raum. Die Mengen $ A \in \mathcal{T} $ heißen offen (bzgl. $ \mathcal{T} $ oder in $ (X,\mathcal{T}) $). $ B \subset X $ heißt abgeschlossen (bzgl. $ \mathcal{T} $ oder in $ (X,\mathcal{T}) $) genau dann, wenn $ B^C=X\setminus B $ offen ist (d.h., falls $ B^C \in \mathcal{T} $ gilt).

2.) Sei $ (X,\mathcal{T}) $ ein topologischer Raum. Ist $ M \subset X $, so heißt
$ M^\circ:=\bigcup_{\begin{matrix}A \in \mathcal{T}\\ A \subset M\end{matrix}}A $
offener Kern oder Inneres von $ M $.

$ \overline{M}:=\bigcap_{\begin{matrix}B \subset X\; \mbox{mit}\; M \subset B\\B\; \mbox{abgeschlossen}}\end{matrix}}B $
heißt Abschluß oder abgeschlossene Hülle von $ M $ (ggf. schreibt man $ \overline{M}^{\mathcal{T}} $ oder $ \overline{M}^{X} $ oder $ \overline{M}^{(X,\mathcal{T})} $).

3.) Sei $ (X,\mathcal{T}) $ ein topologischer Raum und sei $ x \in X $. Eine Menge $ U \subset X $ heißt Umgebung von $ x $ genau dann, wenn es $ A \in \mathcal{T} $ gibt mit $ x \in A \subset \mathcal{T} $. Weiter heißt
$ \mathcal{U}_x:=\{U \subset X:\;U\;\mbox{ist Umgebung von}\;x\} $ Umgebungsfilter.

Erstellt: Mo 17.01.2005 von Marcel
Letzte Änderung: Mo 17.01.2005 um 17:46 von Marcel
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]