matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteBolzano-Weierstraß
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Bolzano-Weierstraß
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Bolzano-Weierstraß

Satz von Bolzano-Weierstraß

Jede beschränkte Folge in $ \IR $ (oder $ \IC $) hat einen Häufungspunkt.


Beweis für $ \IR $

Sei $ (a_n)_{n\in\IN} $ eine beschränkte Folge. Konstruiere eine Intervallschachtelung  $ [I_k, J_k] $, s.d. $ \forall k $:

$ a_n\in[I_k,J_k]\mbox{ für unendlich viele n und } a_n\le J_k\mbox{ für fast alle n}\in\IN.\mbox{ }(\ast) $

Da $ (a_n)_{n\in\IN} $ beschränkt ist, folgt $ \exists K>0:|a_n|\le K\mbox{ }\forall n\in\IN $. Das impliziert für alle $ n\in\IN: a_n\in[-K,K]=:[I_1,J_1] $.

Sei nun $ [I_k,J_k] $ mit $ (\ast) $ gegeben. Konstruiere dann $ [I_{k+1},J_{k+1}] $ wie folgt:
Sei $ M $ Mittelpunkt von $ [I_k,J_k] $. Dann enthält $ [I_k,M] $ oder $ [M,J_k] $ unendlich viele $ a_n $. Setze

$ [I_k,J_k]:= \begin{cases}
     [I_k,M] & \text{falls } a_n \le M\mbox{ für fast alle n} \\
     [M,J_k] & \text{sonst}
   \end{cases} $
Dann enthält $ [I_{k+1},J_{k+1}] $ unendlich viele $ a_n $ und $ a_n\le I_{k+1} $ für fast alle $ n\in\IN $ per constructionem. Für die Längen der Intervalle definiert vermöge $ l:\{[a,b]|a,b\in\IR\}\to\IR $ mit $ l([a,b])=b-a $ gilt:
$ l([I_{k+1},J_{k+1}])=\frac{1}{2}l([I_{k},J_{k}]) $

$ \Rightarrow $ $ l([I_k,J_k])=\frac{1}{2^{k-1}}\cdot l([I_1,J_1]) $ $ \Rightarrow $ $ l([I_k,J_k])\to 0\mbox{ für }k\to\infty $. Also sind die $ [I_k,J_k] $ Intervallschachtellung.
Es existiert also ein $ p\in\IR $ mit $ p\in[I_k,J_k]\mbox{ } \forall k\in\IN $. Zu $ \epsilon>0 $ wähle $ k\in\IN $ mit $ ]p-\epsilon,p+\epsilon[\supseteq[I_k,J_k] $. Da $ [I_k,J_k] $ unendlich viele $ a_n $ enthält, folgt dies auch für $ ]p-\epsilon,p+\epsilon[ $. Es wurde also gezeigt:

$ \forall \epsilon>0 $ existieren unendlich viele $ n\in\IN $: $ |a_n-p|<\epsilon $.

Daraus folgt direkt: $ p $ ist Häufungspunkt.

($ p $ ist sogar größter Häufungspunkt! Denn existierte ein größerer Häufungspunkt, wäre $ a_n\le J_k\mbox{ für fast alle n}\in \IN $ für hinreichend große $ k $ verletzt.)


Beispiele

Beispiel 1:
$ (a_n) $ definiert durch $ a_n:=(-1)^n $. Offensichtlich ist $ |(-1)^n|\le1\mbox{ }\forall n\in\IN $. Also hat $ (a_n) $ mindestens einen Häufungspunkt bzw. konvergente Teilfolgen.
In der Tat existieren sogar genau zwei Häufungspunkte $ -1 $ und $ 1 $.

Beispiel 2:
$ (a_n) $ definiert durch $ a_n:=\frac{n+1}{n} $. Dann ist $ \left|\frac{n+1}{n}\right|=1+\frac{1}{n}\le2\mbox{ }\forall k\in\IN $, denn $ \frac{1}{n} $ ist monoton fallend, was die Abschätzung $ \left|\frac{1}{n}\right|\le\frac{1}{1}=1\mbox{ }\forall n $ impliziert.
Also besitzt $ \left(\frac{n+1}{n}\right)_{n\in\IN} $ mindestens einen Häufungspunkt.
Man sieht in diesem Beispiel leicht ein, dass genau ein Häufungspunkt $ 1 $ existiert.


Bemerkung

Man kann zudem folgende Formulierung des Satzes (Bolzano-Weierstraß) zeigen (vgl. dazu Amman, Escher (2006)):

Jede beschränkte Folge in $ \mathbb{K}^m $ besitzt eine konvergente Teilfolge bzw. einen Häufungspunkt.


Literatur

isbn3764377550 H. Amman/J. Escher: Analysis I

Erstellt: Fr 13.02.2015 von Ladon
Letzte Änderung: Sa 14.02.2015 um 12:02 von Ladon
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]