matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysiszerfall einer substanz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - zerfall einer substanz
zerfall einer substanz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

zerfall einer substanz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:11 Sa 07.10.2006
Autor: Kathinka

Aufgabe
eine radioaktive substanz zerfällt kontinuierlich mit einer zerfallsrate von 1/100 pro zeiteinheit. wie lange dauert es, bis nur noch die hälfte der substanz da ist?

hallöchen :)

die aufgabe soll mit e berechnet werden
x entspricht meinem anfangswert, den ich ja nicht kenne

[mm] x*(1+(-0,01/n)^n [/mm]

die folge [mm] (1+(1/n)^n [/mm] hat ja e als limes, da hab ich nun meine 1% eingebaut, die negativ sein müssen da es ein zerfall ist. soweit richtig?

lim für n --> [mm] \infty [/mm]  x*e^(-0,01)

weiter komme ich nicht, da in meiner gleichung jetzt irgendwie kein t ist, was sich auf die zeit bezieht. wie bekomme ich jetzt heraus, nach wievielen zeiteinheiten ich nur noch x/2 habe?

für hilfe wäre ich sehr dankbar! lg katja

        
Bezug
zerfall einer substanz: Zerfallsgleichung
Status: (Antwort) fertig Status 
Datum: 11:48 So 08.10.2006
Autor: Loddar

Hallo Katja!


Die übliche Zerfallsgleichung lautet (auch mit Deinen Zahlen):

$N(t) \ = \ [mm] N_0*q^t [/mm] \ = \ [mm] N_0*0.99^t$ [/mm]


Das lässt sich wegen $a \ = \ [mm] e^{\ln(a)}$ [/mm] auch umschreiben zu:

$N(t) \ = \ [mm] N_0 *\left( \ e^{\ln(0.99)} \ \right)^t [/mm] \ = \ [mm] N_0*e^{\ln(0.99)*t} [/mm] \ [mm] \approx [/mm] \ [mm] N_0*e^{-0.01*t}$ [/mm]

Nun kannst Du $N(t) \ = \ [mm] \bruch{N_0}{2}$ [/mm] einsetzen und nach $t_$ auflösen.


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]