matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesx gleichzeitig Pol und Nullst.
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - x gleichzeitig Pol und Nullst.
x gleichzeitig Pol und Nullst. < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

x gleichzeitig Pol und Nullst.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 So 06.07.2008
Autor: jarjar2008

Sagen wir ich habe eine Funktion, bei der ein [mm] x_{0} [/mm] gleichzeitig Nullstelle und mehrfache Polstelle ist ...

Was ist die Ordnung von einem solchen [mm] x_{0}? [/mm]

        
Bezug
x gleichzeitig Pol und Nullst.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:48 So 06.07.2008
Autor: Al-Chwarizmi


> Sagen wir ich habe eine Funktion, bei der ein [mm]x_{0}[/mm]
> gleichzeitig Nullstelle und mehrfache Polstelle ist ...
>  
> Was ist die Ordnung von einem solchen [mm]x_{0}?[/mm]


Normalerweise tritt so etwas gar nicht auf !

Du denkst wohl an Beispiele wie etwa

[mm] f(x)=\bruch{(x-3)*(2x+1)}{(x^2-9)*(x-3)} [/mm]

Die Zahl  3  ist keine Nullstelle dieser Funktion, weil
der Nenner in diesem Fall null ist. Division durch null geht
nicht, auch [mm] \bruch{0}{0} [/mm] nicht !

Im obigen Beispiel liegt bei x=3 ein Pol erster Ordnung (also
mit Vorzeichenwechsel) , aber
eben keine Nullstelle.

Ein Faktor (x-3) kürzt sich weg, aber ein weiterer solcher
Faktor steckt noch im Ausdruck [mm] (x^2-9). [/mm]

LG


  

Bezug
                
Bezug
x gleichzeitig Pol und Nullst.: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:01 So 06.07.2008
Autor: jarjar2008

Danke für deine Antwort,


Habe eine kleine Rückfrage mit trivialbeispiel:

Was wäre mit:
[mm] f(z)=\frac{z^2}{z} [/mm]

Ist das jetzt eine Nullstelle erster Ordnung, eine Polstelle erster Ordnung oder gar eine hebbare Singularität?

und was wäre mit

[mm] f(z)=\frac{x^2+1}{(x-i)^2} [/mm]

ist i jetzt eine Polstelle oder eine Nullstelle :)

Bezug
                        
Bezug
x gleichzeitig Pol und Nullst.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:19 So 06.07.2008
Autor: abakus


> Danke für deine Antwort,
>  
>
> Habe eine kleine Rückfrage mit trivialbeispiel:
>  
> Was wäre mit:
>  [mm]f(z)=\frac{z^2}{z}[/mm]
>  
> Ist das jetzt eine Nullstelle erster Ordnung, eine
> Polstelle erster Ordnung oder gar eine hebbare
> Singularität?

Da f für z=0 nicht definiert ist, kann es keine Nullstelle sein. Für alle anderen z ist die Funktion kürzbar zu f(z)=z (mit einer einzigen Lücke bei z=0), also hebbare Singularität.

>  
> und was wäre mit
>  
> [mm]f(z)=\frac{x^2+1}{(x-i)^2}[/mm]

Das ist das gleiche wie [mm]f(z)=\frac{(x-i)(x+i)}{(x-i)^2}[/mm] bzw. [mm] \frac{(x+i)}{(x-i)}, [/mm] falls x [mm] \ne [/mm] i.
Für x=i ist der Zähler ungleich Null, aber der Nenner Null, also Polstelle.
Gruß Abakus

>  
> ist i jetzt eine Polstelle oder eine Nullstelle :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]