matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenwronski-Matrix Expliziet Bew.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - wronski-Matrix Expliziet Bew.
wronski-Matrix Expliziet Bew. < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

wronski-Matrix Expliziet Bew.: Verbesserung der Beweisführung
Status: (Frage) beantwortet Status 
Datum: 18:31 Fr 20.03.2015
Autor: JohannesK

Aufgabe
Seien [mm] f_{1}(x),f_{2}(x),...,f_{n}(x) [/mm] (n-1)-mal stetig differenziebare Funktionen auf der Menge R

i.) Zeigen sie explizit , wenn die Menge M := {  [mm] f_{1}(x),f_{2}(x),...,f_{n}(x) [/mm] } linear abhänig ist folgt , dass
für  [mm] \forall [/mm] x [mm] \in [/mm]   R

|A| = [mm] \vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) } [/mm]  = 0 gilt.

ii.) Schließen sie aus i.)

Existiert ein x [mm] \in [/mm]   R mit |A| ungleich 0, folgt die Menge M ist linear unabhänig.

Grüß euch,
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Die Grundlage der Aufgabe ist klar. Wir haben die klassische Wronski-Matrix , die ich für den Allgemeinen Fall eines Polynom N-Ordnung herleiten soll.

Erstmal nehm ich mir die Bedingung für Lineare Abhänigkeit:

[mm] a1f_{1}(x) [/mm] + [mm] a2f_{2}(x) [/mm] + ... + [mm] anf_{n}(x) [/mm] = 0    [mm] \forall [/mm] x [mm] \in [/mm] R   bei mindestens ein ai ungleich 0

z.z |A|
Dann Bau ich ein LGS auf mit n-1 Zeilen:

[mm] a1f_{1}(x) [/mm] + [mm] a2f_{2}(x) [/mm] + ... + [mm] anf_{n}(x) [/mm] = 0
[mm] a1f_{1}'(x) [/mm] + [mm] a2f_{1}'(x) [/mm] + ... + [mm] anf_{n}'(x) [/mm] = 0
....
[mm] a1f_{1}^{n-1}(x) [/mm] + [mm] a2f_{2}^{n-1}(x) [/mm] + ... + [mm] anf_{n}^{n-1}(x)= [/mm] 0

<=> -> Aufgrund Lineare Abhänigkeit zieh ich die Koefizienten raus



[mm] \vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) } [/mm] * [mm] \vmat{ a1 \\ a2 \\ ... \\ an } [/mm] = [mm] \vmat{ 0 \\ 0 \\ ... \\ 0 } [/mm]

<=> -> Koefizienten-Matrix haut sich raus

[mm] \vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) } [/mm] = 0    q.e.d

Reicht dies als Beweisführung oder würden hier bei einer Expliziten Beweisführung Schritte fehlen?, oder hab ich nen komplett falschen Denkansatz?

Und bei ii.) Weiß ich nicht genau wie ich vorgehen soll

MfG

Johannes




        
Bezug
wronski-Matrix Expliziet Bew.: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Sa 21.03.2015
Autor: fred97


> Seien [mm]f_{1}(x),f_{2}(x),...,f_{n}(x)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

(n-1)-mal stetig

> differenziebare Funktionen auf der Menge R
>  
> i.) Zeigen sie explizit , wenn die Menge M := {  
> [mm]f_{1}(x),f_{2}(x),...,f_{n}(x)[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

} linear abhänig ist folgt

> , dass
>  für  [mm]\forall[/mm] x [mm]\in[/mm]   R
>  
> |A| = [mm]\vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) }[/mm]
>  = 0 gilt.
>  
> ii.) Schließen sie aus i.)
>  
> Existiert ein x [mm]\in[/mm]   R mit |A| ungleich 0, folgt die Menge
> M ist linear unabhänig.
>  Grüß euch,
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Die Grundlage der Aufgabe ist klar. Wir haben die
> klassische Wronski-Matrix , die ich für den Allgemeinen
> Fall eines Polynom N-Ordnung herleiten soll.
>  
> Erstmal nehm ich mir die Bedingung für Lineare
> Abhänigkeit:
>  
> [mm]a1f_{1}(x)[/mm] + [mm]a2f_{2}(x)[/mm] + ... + [mm]anf_{n}(x)[/mm] = 0    [mm]\forall[/mm] x
> [mm]\in[/mm] R   bei mindestens ein ai ungleich 0
>  
> z.z |A|
>  Dann Bau ich ein LGS auf mit n-1 Zeilen:
>  
> [mm]a1f_{1}(x)[/mm] + [mm]a2f_{2}(x)[/mm] + ... + [mm]anf_{n}(x)[/mm] = 0
>  [mm]a1f_{1}'(x)[/mm] + [mm]a2f_{1}'(x)[/mm] + ... + [mm]anf_{n}'(x)[/mm] = 0
>  ....
>  [mm]a1f_{1}^{n-1}(x)[/mm] + [mm]a2f_{2}^{n-1}(x)[/mm] + ... +
> [mm]anf_{n}^{n-1}(x)=[/mm] 0
>  
> <=> -> Aufgrund Lineare Abhänigkeit zieh ich die
> Koefizienten raus


Das hat doch mit "linear Abhängig" nichts zu tun. Obiges Gleichungssystem schreibst Du als Matrix-Vektor - Produkt. Das ist alles.


>  
>
>
> [mm]\vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) }[/mm]
> * [mm]\vmat{ a1 \\ a2 \\ ... \\ an }[/mm] = [mm]\vmat{ 0 \\ 0 \\ ... \\ 0 }[/mm]
>  
> <=> -> Koefizienten-Matrix haut sich raus

Nichts dergleichen !!!!


>  
> [mm]\vmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) }[/mm]
> = 0    q.e.d
>  
> Reicht dies als Beweisführung oder würden hier bei einer
> Expliziten Beweisführung Schritte fehlen?, oder hab ich
> nen komplett falschen Denkansatz?
>  
> Und bei ii.) Weiß ich nicht genau wie ich vorgehen soll
>  
> MfG
>  
> Johannes
>  
>
>  

Vielleicht meinst Du das Richtige, vielleicht auch nicht..

Jedenfalls fällst Du Deiner Bezeichnungsweise zum Opfer. Wo es geht verwendest Du senkrechte Stiche !!!!

Für x [mm] \in [/mm] R sei

[mm] A=A(x)=\pmat{ f_{1}(x) & ... & f_{n}(x) \\ f_{1}'(x) & ... & f_{n}'(x) \\ ... & ... & ... \\ f_{1}^{n-1}(x) & ... & f_{n}^{n-1}(x) } [/mm]

Die [mm] f_i [/mm] sind l.a., also gibt es ein [mm] a^T=(a_1,a_2,...,a_n) \in \IR^n \setminus \{(0,....0)\} [/mm] mit

  [mm] a_1f_1(x)+....+a_nf_n(x)=0 [/mm]  für alle x [mm] \in [/mm] R.

Das bedeutet:

   A(x)a=0.


Damit hat das LGS A(x)z=0 eine nichttriviale Lösung. A(x) ist also nicht invertierbar und somit ist

   |A(x)|=det(A(x))=0.



ZU ii): oben haben wir gezeigt:  M l.a. [mm] \Rightarrow [/mm] det(A(x))=0 für alle x [mm] \in [/mm] R.

Was bedeutet es also, wenn det(A(x)) [mm] \ne [/mm] 0 ist für ein x [mm] \in [/mm] R ?

FRED




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]