matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisvolumen von rotationskörpern
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Schul-Analysis" - volumen von rotationskörpern
volumen von rotationskörpern < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

volumen von rotationskörpern: Frage
Status: (Frage) beantwortet Status 
Datum: 17:38 Do 25.11.2004
Autor: jule_1985

hallo!
ich schreibe morgen eine Klausur und muss dafür wissen wie man die formel für die volumenberechnung eines Kreiskörpers(V= [mm] \pi/3*r²h) [/mm] mithilfe der formel V= [mm] \pi*\integral_{a}^{b} [/mm] {f²(x) dx}nachweisen kann.
wäre echt nett wenn mir jemand helfen könnte.




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
volumen von rotationskörpern: Ansatz
Status: (Antwort) fertig Status 
Datum: 18:20 Do 25.11.2004
Autor: Loddar

Hallo Jule,

[willkommenmr] !!


> [mm]V = \pi/3*r²h[/mm]

Diese Formel halte ich für ein Gerücht. Es dürfte doch eigentlich nur der Radius r auftreten auf der rechten Seite ...
Schau' doch nochmals in der Formelsammlung nach.


> V=[mm]\pi*\integral_{a}^{b} {f²(x) dx}[/mm]nachweisen kann.
>  wäre echt nett wenn mir jemand helfen könnte.
>  

Am besten wir stellen uns einen Kreis vor mit Mittelpunkt im Ursprung.
Betrachten wollen wir nun nur den Ausschnitt im 1. Quadranten.

Gemäß Pythagoras wissen wir doch:
[mm] $x^2 [/mm] + [mm] y^2 [/mm] = [mm] r^2$ [/mm]

Umgestellt: [mm] $y^2 [/mm] = [mm] r^2 [/mm] - [mm] x^2$. [/mm]
Dieses [mm] $y^2$ [/mm] enstspricht nun exakt unserem [mm] $f^2(x)$ [/mm] in der Integralformel.

Welche Grenzen müssen wir nun einsetzen?
Da wir uns ja (vorerst) nur im 1. Quadranten bewegen, beginnen wir mit a=0 und enden bei b=r.

Unsere Volumenformel lautet nun:
[mm] $\pi*\integral_{0}^{r}{y^2 dx} [/mm] = [mm] \pi*\integral_{0}^{r}{(r^2 - x^2) dx}$ [/mm]

Vergessen dürfen wir nur nicht, daß wir auf diesen Wege ja nur das Volumen einer Halbkugel berechnen.
Für unser gewünschtes Endergebnis müssen wir diesen Wert also noch verdoppeln. Die endgültige Formel lautet also:
[mm] $V_{Kugel} [/mm] = [mm] 2*\pi*\integral_{0}^{r}{y^2 dx} [/mm] = [mm] \pi*\integral_{0}^{r}{(r^2 - x^2) dx}$ [/mm]

Kommst Du nun klar?

Grüße Loddar

Bezug
                
Bezug
volumen von rotationskörpern: Kreiskörper?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:17 Do 25.11.2004
Autor: e.kandrai

Habt ihr beiden da vielleicht irgendwie aneinander vorbeigeredet?

Also erstmal (für mich selber, zum Verständnis): was genau versteht man unter einem Kreiskörper? Ist es wirklich nur eine Kugel, wie's Loddar hergeleitet hat? Oder zählen da Körper dazu, die einen (oder mehrere) Kreis(e) als Grund-(oder Deck-)fläche besitzen (wie Kegel, Zylinder)?
Jule hat uns ja die Formel für nen Kegel präsentiert... Bin mir jetzt nur wegen den Begriffen nicht sicher, ob's wirklich ein Mißverständnis war.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]