matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisvollständiger Metrischer Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - vollständiger Metrischer Raum
vollständiger Metrischer Raum < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständiger Metrischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Di 19.10.2010
Autor: Bodo0686

Aufgabe
Gegeben sei [mm] d(x,y):=|\frac{x}{1+|x|}-\frac{y}{1+|y|}|. [/mm] Ist [mm] \IR [/mm] bzgl. dieser Metrik vollständig?

Hallo,

also vollständig heißt ja:

[mm] \forall \varepsilon [/mm] >0 ex. ein n [mm] \in \IN [/mm] sodass, [mm] \forall [/mm] m,n > N [mm] d(x_n,x_m)<\varepsilon [/mm] ist.

Kann ich jetzt folgendes machen?

[mm] |\frac{x_n}{1+|x_n|}-\frac{x_m}{1+|x_m|}| [/mm] = ...

nun fehlt mir eine passende Idee... Könnt ihr mir weiterhelfen? Danke

        
Bezug
vollständiger Metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 08:39 Mi 20.10.2010
Autor: fred97


> Gegeben sei [mm]d(x,y):=|\frac{x}{1+|x|}-\frac{y}{1+|y|}|.[/mm] Ist
> [mm]\IR[/mm] bzgl. dieser Metrik vollständig?
>  Hallo,
>  
> also vollständig heißt ja:
>  
> [mm]\forall \varepsilon[/mm] >0 ex. ein n [mm]\in \IN[/mm] sodass, [mm]\forall[/mm]
> m,n > N [mm]d(x_n,x_m)<\varepsilon[/mm] ist.



Nein, das heißt es nicht.

Definitionen:

1. Ist [mm] (x_n) [/mm] eine Folge in einem metr. Raum (X,d), so heißt [mm] (x_n) [/mm] eine Cauchyfolge : [mm] \gdw [/mm]

[mm]\forall \varepsilon[/mm] >0 ex. ein N [mm]\in \IN[/mm] sodass, [mm]\forall[/mm] m,n > N:  [mm]d(x_n,x_m)<\varepsilon[/mm].

2. (X,d) heißt vollständig, wenn jede Cauchy folge in X konvergent ist.


So, Du sollst nun entscheiden, ob [mm] \IR [/mm] mit der Metrik

                      $ [mm] d(x,y):=|\frac{x}{1+|x|}-\frac{y}{1+|y|}|. [/mm] $

ein vollständiger metr. Raum ist.

FRED


> Kann ich jetzt folgendes machen?
>  
> [mm]|\frac{x_n}{1+|x_n|}-\frac{x_m}{1+|x_m|}|[/mm] = ...
>  
> nun fehlt mir eine passende Idee... Könnt ihr mir
> weiterhelfen? Danke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]