matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Induktionvollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Induktion" - vollständige Induktion
vollständige Induktion < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:37 So 13.12.2009
Autor: Yuuichi-san

Aufgabe
Die Abbildung f : [mm] \IN_{0} \rightarrow \IZ [/mm] ist durch folgende Vorschrift definiert:
f(0)=0
f(1)=0
f(2)=1
f(n+2)=2f(n + 1) + f(n) − 2f(n − 1)

Zeigen sie durch vollständige Induktion, dass gilt
f(n) = -0.5 + [mm] \frac {(-1)^n}{6} [/mm] + [mm] \frac {2^n}{3} [/mm]

So meine Frage ist:
In der Vorlesung hatten wir halt die "normale" vollständige Induktion, aus a(n) folgt a(n+1).
Mit den Fib-Zahlen hatten wir auch etwas: aus a(n-1) und a(n) folgt a(n+1)
Wie wende ich das jetzt auf diese Aufgabe an?
Kann ich einfach zeigen das f(n+2) gilt, indem ich für f(n+1), f(n) und f(n-1) die Formel von f(n) benutzte?
Als I.A. hätte ich ja dann f(0),f(1) und f(2)
Ist dann meine I.Annahme f(n+1), f(n) und f(n-1) sind wahr, daraus folgt f(n+2) gilt?
Beweise ich somit, dass f(n) gilt?
mfg Yuu

        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:42 Mo 14.12.2009
Autor: fred97


> Die Abbildung f : [mm]\IN_{0} \rightarrow \IZ[/mm] ist durch
> folgende Vorschrift definiert:
>  f(0)=0
>  f(1)=0
>  f(2)=1
>  f(n+2)=2f(n + 1) + f(n) − 2f(n − 1)
>  
> Zeigen sie durch vollständige Induktion, dass gilt
> f(n) = -0.5 + [mm]\frac {(-1)^n}{6}[/mm] + [mm]\frac {2^n}{3}[/mm]
>  So meine
> Frage ist:
>  In der Vorlesung hatten wir halt die "normale"
> vollständige Induktion, aus a(n) folgt a(n+1).
>  Mit den Fib-Zahlen hatten wir auch etwas: aus a(n-1) und
> a(n) folgt a(n+1)
>  Wie wende ich das jetzt auf diese Aufgabe an?
>  Kann ich einfach zeigen das f(n+2) gilt, indem ich für
> f(n+1), f(n) und f(n-1) die Formel von f(n) benutzte?
> Als I.A. hätte ich ja dann f(0),f(1) und f(2)
>  Ist dann meine I.Annahme f(n+1), f(n) und f(n-1) sind
> wahr, daraus folgt f(n+2) gilt?

So kannst Du das machen

FRED


>  Beweise ich somit, dass f(n) gilt?
>  mfg Yuu


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]