matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesvollständige Induktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - vollständige Induktion
vollständige Induktion < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Korrektur
Status: (Frage) beantwortet Status 
Datum: 20:32 Di 20.10.2009
Autor: Serafyna

Hallo zusammen,

ich sitz vor meinem Übungsblatt und habe folgendes Problem und bin dabei am Verzweifeln. Wäre echt super, wenn ihr mir helfen könnt.

Aufgabe
Es sei M eine endliche Menge mit card M = n, und sei P(M) die Potenzmenge von M. Zeigen Sie: card P(M) = [mm] 2^n. [/mm]
Hinweis: Machen Sie vollständige Induktion nach n.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


card M = n
card P(M) = [mm] 2^n [/mm]

IA: n=1        card M = 1
                   => P(M) = [mm] {\emptyset, 1} [/mm]
                   => card P(M) = 2 = [mm] 2^1 [/mm] = [mm] 2^n [/mm]

IH: [mm] \summe_{k=1}^{n} [/mm] card P(M) = [mm] 2^n [/mm] für ein n Element N.

IS: n-> n+1

    [mm] \summe_{k=1}^{n+1} [/mm] card P(M) = 2^(n+1)

=  [mm] \summe_{k=1}^{n} n^2 [/mm] + 2^(n+1)


Vielen lieben Dank,
eure Silke

        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Di 20.10.2009
Autor: schachuzipus

Hallo Silke und [willkommenmr],

zunächst mal solltest du (noch)mal einen Blick auf die Forenregeln werfen, v.a. auf den Punkt "höflicher Umgangston"

Es ist doch kaum zuviel verlangt, mit einem knappen "Hallo" zu beginnen und "LG" am Ende zu schreiben, schließlich erwartest du immerhin kostenlose Hilfe

> Es sei M eine endliche Menge mit card M = n, und sei P(M)
> die Potenzmenge von M. Zeigen Sie: card P(M) = [mm]2^n.[/mm]
>  Hinweis: Machen Sie vollständige Induktion nach n.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> card M = n
>  card P(M) = [mm]2^n[/mm]
>  
> IA: n=1        card M = 1
>                     => P(M) = [mm]\{\emptyset, 1\}[/mm]

Ja, das stimmt im Prinzip, wenn auch das Element von $M$ nicht unbedingt 1 sein muss und du es lediglich als "Platzhalter" für das Element benutzt.

Genauer vllt.: Sei $M$ eine Menge mit $card(M)=1$, etwa [mm] $M=\{a\}$. [/mm] Dann ist [mm] $\mathcal{P}(M)=\{\emptyset,a\}$, [/mm] also [mm] $card(\mathcal{P}(M))=2=2^1$ [/mm] ...


>                
>      => card P(M) = 2 = [mm]2^1[/mm] = [mm]2^n[/mm]

>  
> IH: [mm]\summe_{k=1}^{n}[/mm] card P(M) = [mm]2^n[/mm] für ein n Element N.

Huch?

Wie kommst du auf das Summenzeichen?

Die Induktionsvoraussetzung sollte lauten:

Sei [mm] $n\in\IN$ [/mm] beliebig, aber fest und sei $M$ eine Menge mit $card(M)=n$ und gelte [mm] $card(\mathcal{P}(M))=2^n$ [/mm]

>  
> IS: n-> n+1
>  
> [mm]\summe_{k=1}^{n+1}[/mm] card P(M) = 2^(n+1)

Nein, zu zeigen ist im Induktionsschritt, dass unter der Induktionsvoraussetzung für eine Menge $M'$ mit $n+1$ Elementen, also $card(M')=n+1$ gefälligst die Potenzmenge [mm] $\mathcal{P}(M')$ [/mm] auch [mm] $2^{n+1}$ [/mm] Elemente hat.

Dazu kannst du mal o.B.d.A. annehmen, dass [mm] $M'=M\cup \{x\}$ [/mm] mit [mm] $x\notin [/mm] M$ ist und die Teilmengen von $M'$ betrachten, die $x$ enthalten und jene, die $x$ nicht enthalten ...

>  
> =  [mm]\summe_{k=1}^{n} n^2[/mm] + 2^(n+1)

So ohne Kommentar zur Rechnung und v.a zum Auftauchen des Summenzeichen kann man schwerlich was genaueres sagen ...


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]