matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenInduktionsbeweisevollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Induktionsbeweise" - vollständige Induktion
vollständige Induktion < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:37 So 22.02.2009
Autor: silfide

Aufgabe
Beweise die Formel [mm] \bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}=\bruch{n}{n+1} [/mm] durch vollständige Induktion.

Hallo liebe Liebenden oder so...

das ist mir einfach zu hoch. Und stimmen tut diese Behauptung meiner Meinung nach auch nicht. Weil wenn ich für n z.b. 5 einsetze, habe ich ja schon [mm] \bruch{5}{6}. [/mm]

Hilfe, bitte.

Silfide

        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:52 So 22.02.2009
Autor: ChopSuey

Hallo Silfide,

> Beweise die Formel
> [mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}=\bruch{n}{n+1}[/mm]
> durch vollständige Induktion.
>  Hallo liebe Liebenden oder so...
>  
> das ist mir einfach zu hoch.

Es wäre hilfreich zu erfahren, ob du schon ein wenig Wissen und Ahnung über das Beweisen mit Hilfe der vollst. Induktion hast.

Der vollständigen Induktion liegen die sog. Peanoschen Axiome (Giuseppe Peano) zu Grunde.
Seine fünf Axiome definieren die Menge der natürlichen Zahlen $\ [mm] \IN [/mm] $.

Das fünfte Axiom sagt im Grunde aus, dass jede natürliche Zahl $\ n $ einen, und nur einen natürlichen Nachfolger $\ n' = n+1$ hat.

Das ist auch der Grund, weshalb wir bei der vollst. Induktion versuchen zu zeigen, dass, wenn eine Aussage für ein beliebiges $\ n [mm] \in \IN [/mm] $ gilt (was von uns Vorausgesetzt wird), es ebenso gültig ist für $\ n+1$. Dann gilt es für alle Natürlichen Zahlen $\ n [mm] \in \IN [/mm] $.

Bei Null beginnend (oder aber auch erst bei Eins - je nach Definition von $\ [mm] \IN [/mm] $) lassen sich nun alle natürlichen Zahlen erzeugen, in dem du für jedes $\ n $ dessen Nachfolger $\ n+1$ bestimmst. Wir wollen allerdings nicht alle nat. Zahlen erzeugen, denn das nimmt ja kein Ende ... ;-) Wir sollen ja nur zeigen, dass unsere Aussage für alle $\ n [mm] \in \IN [/mm] $ gilt.

So viel zur Idee der vollst. Induktion! Ich denke, das ist ganz nützlich.

Nun zu Deinem Anliegen:

> Und stimmen tut diese
> Behauptung meiner Meinung nach auch nicht. Weil wenn ich
> für n z.b. 5 einsetze, habe ich ja schon [mm]\bruch{5}{6}.[/mm]
>  

Doch, tut sie.

[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}=\bruch{n}{n+1}[/mm]

$\ n = 5 $

[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+\bruch{1}{4*5}+\bruch{1}{5(5+1)}=\bruch{5}{5+1}[/mm]

[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+\bruch{1}{4*5}+\bruch{1}{5*6}=\bruch{5}{6}[/mm]

[mm]\bruch{1}{2}+\bruch{1}{6}+\bruch{1}{12}+\bruch{1}{20}+\bruch{1}{30}=\bruch{5}{6}[/mm]

Wir bilden den Hauptnenner mit $\ 60 $

[mm]\bruch{30}{60}+\bruch{10}{60}+\bruch{5}{60}+\bruch{3}{60}+\bruch{2}{60}=\bruch{5}{6}[/mm]

[mm]\bruch{30+10+5+3+2}{60} = \bruch{5}{6}[/mm]

[mm]\bruch{50}{60} = \bruch{5}{6}[/mm] offensichtlich Wahr (wir kürzen den linken Bruch natürlich mit 10 ;-) )

Du siehst also, für $\ n = 5 $ ist Deine Aussage gültig.

Wir beginnen das Ganze aber nun bei $\ n = 1 $ - unser Induktionsanfang - und führen dann die vollst. Induktion durch, also...

$ [mm] \bruch{1}{1\cdot{}2}+\bruch{1}{2\cdot{}3}+\bruch{1}{3\cdot{}4}+...+\bruch{1}{n(n+1)}=\bruch{n}{n+1} [/mm] $

Induktionsanfang:

$\ n = 1 $

[mm]\bruch{1}{1(1+1)}=\bruch{1}{1+1}[/mm]

[mm]\bruch{1}{1(2)}=\bruch{1}{2}[/mm] Wahr für $\ n = 1$

Es reicht, wenn wir für den Induktionsanfang nur die eins heranziehen, zumal wir es ja für die fünf ebenfalls zeigen konnten.

Wir Vermuten nun, dass die Aussage für ein beliebiges $\ n [mm] \in \IN [/mm] $ gilt.
Das ist die Induktionsannahme.

Also:

[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}=\bruch{n}{n+1}[/mm] Wahr für ein bel. $\ n [mm] \in \IN [/mm] $.

Der entscheidende Schritt ist nun der Induktionsschluss / Induktionsschritt von $\ n $ auf $\ n+1$

Induktionsschritt $\ n [mm] \rightarrow [/mm] n+1 $


[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}=\bruch{n}{n+1}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Wir erweitern nun die Summenkette und addieren auf beiden Seiten $\ \bruch{1}{(n+1)(n+1+1) $

[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}+\bruch{1}{(n+1)(n+1+1)}=\bruch{n}{n+1}+\bruch{1}{(n+1)(n+1+1)}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



Nun ist unser letztes Glied nicht mehr $\ \bruch{1}{n(n+1)}$, sondern  $\ \bruch{1}{(n+1)(n+1+1) $ (erinner dich: der nat. nachfolger von $\ n $ ist $\ n' = n+1$)

Es soll nun gezeigt werden, dass die Aussage trotz $\ n \rightarrow n+1$ ihre Ursprüngliche Form erhielt (es wird nur noch entsprechend gerechnet und gekürzt..):

[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}+\bruch{1}{(n+1)(n+2)}=\bruch{n}{n+1}+\bruch{1}{(n+1)(n+2)}[/mm]

[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}+\bruch{1}{(n+1)(n+2)}=\bruch{n(n+2)}{(n+1)(n+2)}+\bruch{1}{(n+1)(n+2)}[/mm]

[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}+\bruch{1}{(n+1)(n+2)}=\bruch{n(n+2)+1}{(n+1)(n+2)}[/mm]

[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}+\bruch{1}{(n+1)(n+2)}=\bruch{n^2+2n+1}{(n+1)(n+2)}[/mm]  

[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}+\bruch{1}{(n+1)(n+2)}=\bruch{(n+1)^2}{(n+1)(n+2)}[/mm]

Wir kürzen nun auf der rechten Seite:

[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}+\bruch{1}{(n+1)(n+2)}=\bruch{n+1}{(n+2)}[/mm]

Damits auch ersichtlicher wird, werden die Brüche wie zu Beginn dargestellt:


[mm]\bruch{1}{1*2}+\bruch{1}{2*3}+\bruch{1}{3*4}+...+\bruch{1}{n(n+1)}+\bruch{1}{(n+1)(n+1+1)}=\bruch{n+1}{(n+1)+1}[/mm]

Die Aussage hat also exakt die selbe Form wie zu Beginn, nur mit dem Unterschied, dass von $\ n $ auf $\ n +1$ "geschlussfolgert" wurde :-)

> Hilfe, bitte.

Ich hoffe ich konnte dir helfen! Bei Fragen, Fragen :-)

>  
> Silfide

Gruß
ChopSuey

Bezug
                
Bezug
vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:01 So 22.02.2009
Autor: silfide

Hallo ChopSuey,

danke erstmal für deine Hilfestellung. Probleme mit der nchvollziehung hbe ich nicht, allerdings habe ich Probleme auf solche Lösungen zu kommen. Kann man generell mit n+1 ergänzen (also bei ähnlichen Aufgaben)?

Bezug
                        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 So 22.02.2009
Autor: reverend

Hallo silfide,

> Kann man generell mit n+1
> ergänzen (also bei ähnlichen Aufgaben)?

Ich verstehe die Frage nicht. Der Sinn der vollständigen Induktion, die ChopSuey hier sehr ausführlich und gut erklärt hat, ist doch, zwei Dinge zu zeigen und daraus zu folgern, dass eine Behauptung ab einem bestimmten Punkt stimmt.

1) Man zeigt für das kleinstmögliche n (meistens ist das 1), dass die Behauptung stimmt.
2) Dann zeigt man, dass sie auch für n+1 stimmt, wenn sie für n gestimmt hat.

Damit hat man dann bis in Unendliche die Gültigkeit gezeigt, eben wegen der zugrundegelegten Peanoschen Axiome.

Du "ergänzt" also nicht "mit (n+1)", sondern prüfst die Gültigkeit der Behauptung für (n+1) unter der Annahme, dass sie für n auch schon stimmt. Dazu muss man irgendwie den Fall (n+1) auf den Fall n zurückführen.

Klarer?

Grüße,
reverend

Bezug
                                
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:58 Mi 25.02.2009
Autor: silfide

Jap, alles klar. Ich brauche manches Mal ein wenig länger und ich hasse Variable...

Danke euch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]