matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungvollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Differenzialrechnung" - vollständige Induktion
vollständige Induktion < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:42 Mi 19.01.2005
Autor: who11

Hallo,

wir haben diese Aufgabe gekriegt:
----------------------------------------------------------------------------------------------
In einer ebene sollen n geraden so verlaufen,dass keine gerade zu einer anderen parallel ist und es keinen punkt gibt, durch den mehr als zwei der geraden gehen.
a) veranschaulichen sie den sachverhalt für n=3. Zeichnen sie eine vierte gerade und geben sie an, wie viele neue ebenenteile dabei entstehen.
b)begründen sie, dass die hinzunahme einer (n+1)-ten geraden zu k berreits vorhandenen geraden die anzahl der ebenenteile um n+1 erhöht.
c)ermitteln sie eine formel für für die anzahl der ebenenteile in abhängigkeit von der geradenanzahl n. Beweisen Sie ihre Vermutung durch vollständige Induktion.
-------------------------------------------------------------------------------------------

also bei a) hab ich es gezeichnet und komme bei n=3 auf 7 teile und bei n=4 komme ich auf 4 neue teile

also bei b)
hab ich so überlegt :
k=1 (also eine gerade und 2 ebenenteile) dann wird eine gerade dazugenommen (also k bzw. n+1) haben wir zwei geraden und 4 ebenenteile bei drei dann 7 ebenenteile aber nun versteh ich ich nicht die erhöhung der ebenenteile auf n+1

und bei c) hab ich noch keine ahnung da ich ja b nicht gelöst krieg

ich würd mich über hilfe freuen

MfG who11

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 16:57 Mi 19.01.2005
Autor: Marle

Hallo ich weiß nicht ob dir das hilft aber noch mal aufgeschlüsselt:
Am Anfang hast du eine Ebene und keine Gerade
wenn du die Zahl der Graden erhöhst kommt folgende Tabelle raus:

Graden     (Teil)ebenen
0                 1
1                 2        (+1)
2                 4        (+2)
3                 7        (+3)
4                11        (+4)
...              ...        ...
n                            +n
und so weiter ...

Es handelt sich um nicht parralele Graden, d.h. sie schneiden sich (sofern sie sich in einer Ebene befinden) in einem Punkt. Wenn zu den vornandenen Graden eine hinzukommt so schneidet diese alle anderen Graden ...
[mm] S_{Ebene} = 1 + 1 + 2 + 3 + ... + n[/mm]

Vermutung:
[mm] S_{Ebene} =1 + \summe_{i=1}^{n} n = 1 + \bruch{n*(n+1)}{2}[/mm]

Vollständige Induktion:

IA.: [mm] n=1[/mm]
     [mm]1 + \summe_{i=1}^{1} i = 2 [/mm]
     [mm] 1 + \bruch{1*(1+1)}{2} = 2 [/mm]            korrekt
IS.
Vorraussetzung: [mm]n=m [/mm]
     [mm] S_{Ebene} = 1 + \summe_{i=1}^{m} i = 1 + \bruch{m*(m+1)}{2}[/mm]
Behauptung: [mm]n=m+1 [/mm]
     [mm] S_{Ebene} =1 + \summe_{i=1}^{m+1} i = 1 + \bruch{(m+1)*((m+1)+1)}{2}[/mm]
Beweis:
     [mm]1 + \bruch{(m+1)*((m+1)+1)}{2} = 1 + \bruch{m*(m+1)}{2} + (m+1) [/mm]
     [mm]1 + \bruch{(m+1)*((m+1)+1)}{2} = 1 + \bruch{m*(m+1)}{2} + \bruch{2(m+1)}{2}[/mm]
     [mm]1 + \bruch{(m+1)*((m+1)+1)}{2} = 1 + \bruch{m*(m+1)+2*(m+1)}[/mm]
     [mm]1 + \bruch{(m+1)*((m+1)+1)}{2} = 1 + \bruch{(m+1)(m+2)}{2}[/mm]
     [mm]1 + \bruch{(m+1)*((m+1)+1)}{2} = 1 + \bruch{(m+1)(m+1+1)}{2}[/mm]
     [mm]1 + \bruch{(m+1)*((m+1)+1)}{2} = 1 + \bruch{(m+1)*((m+1)+1)}{2}[/mm]
qed

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]