matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisvollständige Induktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - vollständige Induktion
vollständige Induktion < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:40 Mi 02.11.2005
Autor: Michael1982

Hallo,
ich habe vollgende Aufgabe bei der ich vollständige Induktion durchführen soll und da hänge ich gerade mächtig fest.

n  [mm] \varepsilon [/mm] N

[mm] \summe_{i=1}^{n} k^2 [/mm] =  [mm] \bruch{n(n+1)(2n+1)}{6} [/mm]

Denn ersten Schritt hab ich noch hinbekommen:
N=1
=> 1=1

Schritt Nummer 2:
n=n+1

[mm] \summe_{i=1}^{n} k^2 [/mm] + [mm] (n+1)^2 [/mm] =  [mm] \bruch{(n+1)(n+2)(2n+3)}{6} [/mm]

So, und ab hier komme ich nicht mehr weiter. Was kann ich denn nun machen um zu beweisen, dass die linke und rechte Seite gleich sind.

Schon mal danke im voraus.

Ich habe diese Frage in keinem anderem Forum gestellt.



        
Bezug
vollständige Induktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:00 Do 03.11.2005
Autor: Michael1982

Ich habe diese Aufgabe eben selber gelöst, man muss ja nur die erste Gleichung (nachdem man sie für n=1 nachgewiesen hat) in die zweite einsetzen. Also für das  [mm] \summe_{i=1}^{n} k^2 [/mm] setzt man in der zweiten Gleichung einfach  [mm] \bruch{n(n+1)(2n+1)}{6} [/mm] ein. Dann rechnet man die linke und die rechte Seite aus und es muss das gleiche rauskommen. Hier noch der Forumsbeitrag der mir sehr weitergehofen hat.  
https://matheraum.de/read?t=97663&v=t

Bezug
                
Bezug
vollständige Induktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:59 Do 03.11.2005
Autor: Herby

Hallo Michael,

dann viel Spaß [huepf] bei den nächsten Aufgaben



lg
Herby

Bezug
        
Bezug
vollständige Induktion: Antwort
Status: (Antwort) fertig Status 
Datum: 08:27 Do 03.11.2005
Autor: Britta82

hi,

der I.A ist richtig



> Schritt Nummer 2:
>  n=n+1
>  
> [mm]\summe_{i=1}^{n} k^2[/mm] + [mm](n+1)^2[/mm] =  

hier setzt du den I.A ein und mußt zeigen, daß $ [mm] \bruch{n(n+1)(2n+1)}{6} [/mm] $ + [mm] (n+1)^{2}=[/mm]  [mm]\bruch{(n+1)(n+2)(2n+3)}{6}[/mm] ist,

Rechne einfach beide Seiten aus und dann paßt das

LG

Britta

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]