matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnungvereinigung zweier basen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra / Vektorrechnung" - vereinigung zweier basen
vereinigung zweier basen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

vereinigung zweier basen: tipp bzw Hilfe bitte
Status: (Frage) beantwortet Status 
Datum: 18:51 Fr 27.05.2011
Autor: froggy60

Aufgabe
Sei V ein K-Vektorraum mit Basis gegeben durch {vi | 1 [mm] \le [/mm] i [mm] \le [/mm] n} und W ein K-Vektorraum mit Basis gegeben durch {wj | 1 [mm] \le [/mm] j [mm] \le [/mm] m}.
Zeigen Sie, dass {(vi; 0) | 1 [mm] \le [/mm] i [mm] \le [/mm]  n} [mm] \cup [/mm]  {(0; wj ) | 1 [mm] \le [/mm]  j [mm] \le [/mm] m} eine Basis von Vx W ist.Insbesondere gilt dim(V x W) = dim(V ) + dim(W);
falls dim(V) und dim(W) [mm] <\infty. [/mm]


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich versuche mich seit mehreren stunden an dieser aufgabe und verwerfe jeden ansatz da ich nirgends weiter komme. wie fange ich am besten an? muss ich anfangen vektorraumeigenschaften für die vereinigung nachzurechnen? oder doch mit dem dimensionssatz? dass v x w ein vektorraum ist habe ich bereits bewiesen...  sorry steh echt total am schlauch und bin voll verzweifelt :(
edit: habe versucht es korrekt mit den formeln darzustellen. hoffe es ist besser jetzt. nur den index hab ich leider nicht hinbekommen (bei v, w soll das i bzw j im index stehen)

        
Bezug
vereinigung zweier basen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:38 Sa 28.05.2011
Autor: leduart

Hallo
dein post ist fuer mich zumindest nicht lesbar, du hast irgendwelche komischen Zeichen auf deinem keyboard benutzt? sieh ihn die nochmal an und schreib die Frage mit dem editor.
Gruss leduart


Bezug
        
Bezug
vereinigung zweier basen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:29 So 29.05.2011
Autor: meili

Hallo froggy,

[willkommenmr]

> Sei V ein K-Vektorraum mit Basis gegeben durch [mm]\{v_i | 1 \le i \le n \}[/mm] und W ein K-Vektorraum mit Basis gegeben durch
> [mm]\{w_j | 1 \le j \le m \}[/mm].
>  Zeigen Sie, dass [mm]\{(v_i; 0) | 1 \le i \le n \} \cup \{(0; w_j ) | 1 \le j \le m \}[/mm] eine Basis von V x W
> ist.Insbesondere gilt dim(V x W) = dim(V ) + dim(W);
>  falls dim(V) und dim(W) [mm]<\infty.[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> ich versuche mich seit mehreren stunden an dieser aufgabe
> und verwerfe jeden ansatz da ich nirgends weiter komme. wie
> fange ich am besten an? muss ich anfangen
> vektorraumeigenschaften für die vereinigung nachzurechnen?

Nein, die Vereinigung [mm] $\{(v_i; 0) | 1 \le i \le n\} \cup\{(0; w_j ) | 1 \le j \le m \}$ [/mm] soll doch eine Basis von $V [mm] \times [/mm] W$ sein.
Dazu ist zu zeigen, dass die Vektoren linear unabhängig sind, und
dass jeder Vektor $y [mm] \in [/mm] V [mm] \times [/mm] W$ sich als Linearkombination der Basisvektoren darstellen lässt.

> oder doch mit dem dimensionssatz? dass v x w ein vektorraum
> ist habe ich bereits bewiesen...  sorry steh echt total am
> schlauch und bin voll verzweifelt :(

Ja, Dimensionssatz für $dim(V [mm] \times [/mm] W) = dim(V ) + dim(W)$.

>  edit: habe versucht es korrekt mit den formeln
> darzustellen. hoffe es ist besser jetzt. nur den index hab
> ich leider nicht hinbekommen (bei v, w soll das i bzw j im
> index stehen)

mit dem Index geht das so: [mm] $v_i$ [/mm]

Gruß
meili

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]