matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikunkorreliert, nicht unabhängig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - unkorreliert, nicht unabhängig
unkorreliert, nicht unabhängig < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unkorreliert, nicht unabhängig: Korrektur
Status: (Frage) beantwortet Status 
Datum: 03:51 Di 10.06.2014
Autor: Cccya

Aufgabe
Sei X normalverteilt (u, [mm] o^2) [/mm] mit u = 0 und sei Y = [mm] X^2-1. [/mm] Beweisen Sie, dass X und Y unkorreliert, aber nicht unabhängig sind.

Meine Lösung:
Cov(XY) = E(XY) - E(X)E(Y) = [mm] E(X(X^2-1)) [/mm] - [mm] E(X)E(X^2-1) [/mm] =
[mm] E(X(X^2-1)) [/mm] - [mm] 0*E(X^2-1) [/mm] = [mm] E(X(X^2-1)) [/mm] = [mm] E(X^3 [/mm] - X) = [mm] E(X^3) [/mm] - E(X) =
0 - 0 = 0 Es wurde vorher schon gezeigt, dass alle ungeraden Momente E(X^2k+1) = 0
Bei der Unabhängigkeit bin ich mir nicht so sicher, kann ich sagen:
P(X < -1 [mm] \cap [/mm] Y < 0) = 0 [mm] \not= [/mm] P(X < -1)P(Y < 0) > 0 denn man kann [mm] o^2 [/mm] so wählen, dass sowohl P(X < -1) als auch P(Y < 0) größer null sind.
Ist das ok? Danke euch!

        
Bezug
unkorreliert, nicht unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 08:33 Di 10.06.2014
Autor: Gonozal_IX

Hiho,

sieht soweit gut aus, einzig deine letzte Begründung

> denn man kann [mm]o^2[/mm] so wählen, dass sowohl P(X < -1) als auch P(Y < 0) größer null sind.

ist falsch. Zeige: Dein Gegenbeweis gilt für beliebige [mm] \sigma [/mm]

Gruß,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]