matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebrauniverselle Eigenschaft
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebra" - universelle Eigenschaft
universelle Eigenschaft < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

universelle Eigenschaft: beweis nicht klar
Status: (Frage) beantwortet Status 
Datum: 09:25 Di 16.08.2011
Autor: lukas10000

Aufgabe
[mm] f_1:UxV [/mm] -> [mm] X_1 [/mm] und [mm] f_2:UxV [/mm] -> [mm] X_2 [/mm] haben die univ. Eigenschaft.

Zeigen sie die Eindeutigkeit des Tensorproduktes, indem es einen Isomorpgismus g: [mm] X_1 [/mm] -> [mm] X_2 [/mm] gibt.


Auf Grund er u.E. folgt, dass es

[mm] g_1: X_1 [/mm] -> [mm] X_2 [/mm] und [mm] g_2: X_2 [/mm] -> [mm] X_1 [/mm] gibt

dann ist [mm] g_1 \circ g_2 \circ f_2 [/mm] = [mm] f_2 [/mm] und [mm] g_2 \circ g_1 \circ f_1 [/mm] = [mm] f_1 [/mm]

Also [mm] g_1 \circ g_2 [/mm] = [mm] id_(im_f_2) [/mm] und [mm] g_2 \circ g_1 [/mm] = [mm] id_(im_f_1) [/mm]

Wie sehe ich nun, dass g := [mm] g_1 [/mm] ein isomorphismus ist? Als begründung wird angegeben, dass [mm] g_1 [/mm] und [mm] g_2 [/mm] zueinander inverse Isomorphismen sind, was ist nicht sehe.

        
Bezug
universelle Eigenschaft: Antwort
Status: (Antwort) fertig Status 
Datum: 09:48 Di 16.08.2011
Autor: statler

Guten Morgen!

> [mm]f_1:UxV[/mm] -> [mm]X_1[/mm] und [mm]f_2:UxV[/mm] -> [mm]X_2[/mm] haben die univ.
> Eigenschaft.
>  
> Zeigen sie die Eindeutigkeit des Tensorproduktes, indem es
> einen Isomorpgismus g: [mm]X_1[/mm] -> [mm]X_2[/mm] gibt.
>  
> Auf Grund er u.E. folgt, dass es
>  
> [mm]g_1: X_1[/mm] -> [mm]X_2[/mm] und [mm]g_2: X_2[/mm] -> [mm]X_1[/mm] gibt
>  
> dann ist [mm]g_1 \circ g_2 \circ f_2[/mm] = [mm]f_2[/mm] und [mm]g_2 \circ g_1 \circ f_1[/mm]
> = [mm]f_1[/mm]
>  
> Also [mm]g_1 \circ g_2[/mm] = [mm]id_(im_f_2)[/mm] und [mm]g_2 \circ g_1[/mm] =
> [mm]id_(im_f_1)[/mm]
>  
> Wie sehe ich nun, dass g := [mm]g_1[/mm] ein isomorphismus ist? Als
> begründung wird angegeben, dass [mm]g_1[/mm] und [mm]g_2[/mm] zueinander
> inverse Isomorphismen sind, was ist nicht sehe.

Wenn [mm] \alpha \circ \beta [/mm] injektiv ist, dann ist [mm] \beta [/mm] injektiv, und wenn [mm] \alpha \circ \beta [/mm] surjektiv ist, dann ist [mm] \alpha [/mm] surjektiv. Das ist relativ leicht zu beweisen, und daraus folgt dann alles.

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]