matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenunitäre Matrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Matrizen" - unitäre Matrizen
unitäre Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

unitäre Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Mi 22.02.2012
Autor: lustigerhurz

Im Beweis, dass eine Matrix genau dann unitär diagonalisierbar ist, wenn sie normal ist, kommt folgende Zeile vor:

Sei A unitär diag'bar, dann ist

[mm] AA^{T} [/mm] = [mm] (UD\overline{U}^{T})*(UD\overline{U}^{T})^T [/mm]

Wieso gilt dann für die nächste Zeile, dass

[mm] (UD\overline{U}^{T})^T [/mm] = [mm] (U\overline{D}\overline{U}^{T}) [/mm]

        
Bezug
unitäre Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:51 Mi 22.02.2012
Autor: Denny22


> Im Beweis, dass eine Matrix genau dann unitär
> diagonalisierbar ist, wenn sie normal ist, kommt folgende
> Zeile vor:
>  
> Sei A unitär diag'bar, dann ist
>  
> [mm]AA^{T}[/mm] = [mm](UD\overline{U}^{T})*(UD\overline{U}^{T})^T[/mm]
>  
> Wieso gilt dann für die nächste Zeile, dass
>  
> [mm](UD\overline{U}^{T})^T[/mm] = [mm](U\overline{D}\overline{U}^{T})[/mm]  

Sei [mm] $A\in\IC^{n,n}$ [/mm] unitär diagonalisierbar, dann gibt es per Definition eine unitäre Matrix [mm] $U\in\C^{n,n}$ [/mm] (d.h. [mm] $\overline{U}^TU=I$ [/mm] und somit [mm] $\overline{U}^T=U^{-1}$) [/mm] so dass
    [mm] $\overline{U}^T [/mm] A U=D$
wobei [mm] $D\in\C^{n,n}$ [/mm] eine Diagonalmatrix ist. Es gilt nun

$A$ ist genau dann unitär diagonalisierbar, wenn $A$ normal ist.

Wir zeigen diese Aussage von links nach rechts, d.h. wir müssen nachweisen, dass $A$ normal ist, d.h.
    $A [mm] \overline{A}^T=\overline{A}^T [/mm] A$
Dies folgt einfach aus
    [mm] $A\overline{A}^T$ [/mm]
    [mm] $=(UD\overline{U}^T)\overline{(UD\overline{U}^T)}^T$ [/mm]
    [mm] $=UD\overline{U}^TU\overline{D}^T\overline{U}^T$ [/mm]
    [mm] $=UD\overline{D}^T\overline{U}^T$ [/mm]
    [mm] $=U\overline{D}^TD\overline{U}^T$ [/mm]
    [mm] $=U\overline{D}^T\overline{U}^T UD\overline{U}^T$ [/mm]
    [mm] $=\overline{UD\overline{U}^T}^T (UD\overline{U}^T)$ [/mm]
    [mm] $=\overline{A}^T [/mm] A$
Im Falle, wenn $A$ reell ist gilt [mm] $\overline{A}^T=A^T$. [/mm]

Bis dann

Bezug
                
Bezug
unitäre Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:41 Mi 22.02.2012
Autor: lustigerhurz

Der Beweis ist mir total klar. Das ist nicht das Problem.
Mein Problem ist, ich verstehe nicht, warum

[mm] \overline{(UD\overline{U}^T)}^T [/mm] = [mm] U\overline{D}^T\overline{U}^T [/mm]

Bezug
                        
Bezug
unitäre Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:19 Mi 22.02.2012
Autor: felixf

Moin!

> Der Beweis ist mir total klar. Das ist nicht das Problem.
>  Mein Problem ist, ich verstehe nicht, warum
>  
> [mm]\overline{(UD\overline{U}^T)}^T[/mm] =
> [mm]U\overline{D}^T\overline{U}^T[/mm]  

Jetzt mit dem grossen Ueberstrich macht es schon mehr Sinn als in deiner urspruenglichen Frage :)

Es ist [mm] $\overline{(UD\overline{U}^T)}^T [/mm] = [mm] (\overline{U}\overline{D} \overline{\overline{U}^T})^T [/mm] = [mm] (\overline{U}\overline{D} \overline{\overline{U}}^T)^T [/mm] = [mm] (\overline{U}\overline{D} U^T)^T [/mm] = [mm] (U^T)^T \overline{D}^T \overline{U}^T [/mm] = U [mm] \overline{D} \overline{U}^T$. [/mm] Dazu beachte, dass fuer eine Diagonalmatrix $D' := [mm] \overline{D}$ [/mm] gilt $D'^T = D'$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]