matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikuniform,unabh. gemeins. Dichte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - uniform,unabh. gemeins. Dichte
uniform,unabh. gemeins. Dichte < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uniform,unabh. gemeins. Dichte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:59 Sa 21.01.2017
Autor: Noya

Aufgabe
Sei X uniform verteilt auf dem Intervall [a,b], Y uniform verteilt auf [c,d] und X,Y seien unabhängig.

a) Bestimme die gemeinsame Dichte von (X,Y ).
b) Sei g : [a,b] [mm] \to [/mm] [c,d] stetig. Zeige, dass A := [mm] \{Y \le g(X)\} [/mm] ein Ereignis ist und bestimme seine Wahrscheinlichkeit.


Tipp: Für A_11 [mm] \subseteq A_2 \subseteq [/mm] ... ist [mm] \bigcup_{n=1}^{\infty} A_n [/mm] ein Ereignis.

Hallöle ihr Lieben.


X uniform verteil auf [a,b] = gleichverteilt auf [a,b].


[mm] f_X [/mm] (x) = [mm] \begin{cases} \bruch{1}{b-a}, & \mbox{für } x \in [a,b] \\ 0, & \mbox{sonst } \end{cases} [/mm]

[mm] F_X(x) [/mm] = [mm] \begin{cases} 0, & x\le a \\\bruch{(x-a)}{b-a}, & \mbox{für } x \in [a,b] \\ 1 ,& x \ge b \end{cases} [/mm]




Y gleichverteilt auf [c,d]

[mm] f_Y [/mm] (y) = [mm] \begin{cases} \bruch{1}{d-c}, & \mbox{für } x \in [c,d] \\ 0, & \mbox{sonst } \end{cases} [/mm]

[mm] F_Y(y) [/mm] = [mm] \begin{cases} 0, & x\le c \\\bruch{(y-c)}{d-c}, & \mbox{für } x \in [c,d] \\ 1 ,& x \ge d \end{cases} [/mm]



so nun soll ich die gemeinsame Dichte von (X,Y) bestimmen also f_(X,Y)(x,y), da X und Y unabhängig gilt

[mm] f_{(X,Y)}(x,y) [/mm] = [mm] f_X(x) \cdot{} f_Y(y) [/mm]


[mm] \underbrace{=}_{????} \begin{cases} \bruch{1}{(b-a)\cdot{}(d-c)}, & \mbox{für } x \in [a,b], y \in [c,d] \\ 0, & \mbox{sonst } \end{cases} [/mm]



Wobei ich bezweifle, dass das so geht. Aber mehr fällt mir nicht ein.


Danke!!

        
Bezug
uniform,unabh. gemeins. Dichte: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Sa 21.01.2017
Autor: Gonozal_IX

Hiho,

> so nun soll ich die gemeinsame Dichte von (X,Y) bestimmen
> also f_(X,Y)(x,y), da X und Y unabhängig gilt
>  
> [mm]f_{(X,Y)}(x,y)[/mm] = [mm]f_X(x) \cdot{} f_Y(y)[/mm]
>  
>
> [mm]\underbrace{=}_{????} \begin{cases} \bruch{1}{(b-a)\cdot{}(d-c)}, & \mbox{für } x \in [a,b], y \in [c,d] \\ 0, & \mbox{sonst } \end{cases}[/mm]

[ok]

> Wobei ich bezweifle, dass das so geht. Aber mehr fällt mir nicht ein.

Warum bezweifelst du das?
Wie war das mit Beweisen in der Mathematik? ^^

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]