matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGraphentheorieungerichtete Graphen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Graphentheorie" - ungerichtete Graphen
ungerichtete Graphen < Graphentheorie < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ungerichtete Graphen: Tipp bzw. Vorgehensweise
Status: (Frage) beantwortet Status 
Datum: 13:43 Mo 03.02.2014
Autor: mathe_doc

Aufgabe
Sei G ein ungerichteter zusammenh ̈ngender Graph mit durchschnittlichem (arithmetisches Mittel) Knotengrad > 2.
Zeigen Sie, dass G dann mindestens zwei Kreise
hat.



Wie soll ich vorgehen bei dieser Aufgabe ?
Soll ich das mit Induktion machen ?

Gruß Teddy 3====D{()}

---------------
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
ungerichtete Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Mi 05.02.2014
Autor: felixf

Moin!

> Sei G ein ungerichteter zusammenh ̈ngender Graph mit
> durchschnittlichem (arithmetisches Mittel) Knotengrad > 2.
>  Zeigen Sie, dass G dann mindestens zwei Kreise
>  hat.
>  
>
> Wie soll ich vorgehen bei dieser Aufgabe ?
> Soll ich das mit Induktion machen ?

Versuch doch mal einen Beweis per Kontraposition: wenn der Kreis hoechstens einen Kreis hat, ist der durchschnittliche Knotengrad hoechstens gleich 2.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Graphentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]