matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisuneigentliches Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - uneigentliches Integral
uneigentliches Integral < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliches Integral: Frage
Status: (Frage) beantwortet Status 
Datum: 00:31 Do 28.04.2005
Autor: Mikke

Hallo zusammen!!

Bräuchte mal eure hilfe. wäre schön wenn sich wer finden würde der sich die zeit nimmt mir kurz zu helfen. also folgendes problem.

Wie zeige ich, dass das uneigentliche integral

[mm] \integral_{0}^{\infty} {|\bruch{sinx}{x}|dx} [/mm]

divergent ist.

Mir käme hochstens die Idee das über die harmonische reihe zu versuchen.

Bitte helft mir.
Gruß Mikke

        
Bezug
uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 07:16 Do 28.04.2005
Autor: Fabian

Hallo Mikke

Die Idee mit der harmonischen Reihen ist gar nicht schlecht!


[mm] \integral_{0}^{k\pi} {|\bruch{sinx}{x}|*dx}=\summe_{k=1}^{n}\integral_{(k-1)\pi}^{k\pi} {|\bruch{sinx}{x}|*dx} [/mm]

Da [mm] 0

[mm] \ge\summe_{k=1}^{n}\bruch{1}{k\pi}\integral_{(k-1)\pi}^{k\pi} {|sinx|*dx}=\summe_{k=1}^{n}\bruch{1}{k\pi}\integral_{0}^{\pi} {sinx*dx}=\bruch{2}{\pi}\summe_{k=1}^{n}\bruch{1}{k} [/mm]


Jetzt mußt du nur noch abschätzen:

[mm] \integral_{0}^{\infty} {|\bruch{sinx}{x}|*dx}\ge\integral_{0}^{n\pii} {|\bruch{sinx}{x}|*dx}\ge\bruch{2}{\pi}\summe_{k=1}^{n}\bruch{1}{k} [/mm]

und daraus folgt dann die Divergenz von [mm] \integral_{0}^{\infty} {|\bruch{sinx}{x}|*dx} [/mm]



Gruß Fabian



Bezug
                
Bezug
uneigentliches Integral: rückfrage
Status: (Frage) beantwortet Status 
Datum: 22:51 Do 28.04.2005
Autor: Mikke

hi!
danke schon mal für die hilfe, hab allerdings leider noch nicht alles verstanden. Wie kommst du drauf die Grenzen des Integrals bei den Abschätzungen so zu wählen wie du sie gewählt hast. Hilf mir beim vertehen bitte nochmal. danke
gruß mikke

Bezug
                        
Bezug
uneigentliches Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 10:31 Fr 29.04.2005
Autor: Fabian

Hallo Mikke

Bei der Abschätzung ist mir ein Fehler unterlaufen , der dich bestimmt verwirrt hat.[sorry]

Es müßte $ [mm] \integral_{0}^{\infty} {|\bruch{sinx}{x}|\cdot{}dx}\ge\integral_{0}^{n\pi} {|\bruch{sinx}{x}|\cdot{}dx}\ge\bruch{2}{\pi}\summe_{k=1}^{n}\bruch{1}{k} [/mm] $ heißen.

Die anderen Grenzen hab ich so gewählt , dass ich irgendwie auf die harmonische Reihe komme. Also mehr oder weniger willkürlich! Da muß man immer ein wenig rumbasteln.

Sorry , das ich das jetzt nicht mathematischer formulieren kann. Aber darin bin ich als Schüler noch nicht so fit.

Ich hoffe ich konnte dir trotzdem helfen!

Gruß Fabian




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]