uneigentliche integrale < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | gegeben sind die beiden funktionen f(x)= [mm] x^{-2} [/mm] ; x [mm] \in [/mm] R+ und
[mm] g(x)=x^{3}; x\in [/mm] R+. c sein eine zahl aus dem intervall [mm] [1;\infty[.
[/mm]
a) welche flächenmaßzahl [mm] A_{c} [/mm] hat das flächenstück, das begrenzt wird von den beiden graphen, der x-achse und den geraden mit den gleichungen x-0,5=0 und x-c=0 ?
b) existiert [mm] \limes_{c\rightarrow\infty} A_{c} [/mm] ? |
die beiden graphen befinden sich doch oberhalb der x-achse, da x [mm] \in [/mm] R+, oder?
zu a) lösung müsste sein: [mm] \bruch{79}{64}-\bruch{1}{c}
[/mm]
zu b) lösung: ja ( [mm] \bruch{79}{64} [/mm] )
aber wie komm ich darauf?
zu a) die beiden geraden, die das flächenstück begrenzen, sind ja parallel zur y-achse. also suchen wir [mm] \integral_{0,5}^{c}{... dx}, [/mm] oder? aber wie mach ich das mit den beiden graphen? da muss man doch irgendwie den schnittpunkt berechnen, damit man die grenzen hat, aber die hab ich ja so schon... muss ich dann f(x)+g(x) rechnen?
zu b) ich versteh nicht ganz, was ich da egtl machen soll...
könnt ihr mir helfen?
danke:)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:57 So 09.03.2008 | Autor: | leduart |
Hallo
Skizziere die 2 Graphen. dann ist das erste Stück von 0,5 bis 1 entweder nicht zw. den Graphen, oder nicht zw x- Achs und Gr.
Also nehmen wir von 0 bis 0,5 die Fläche unter [mm] x^3 [/mm] von 1 bis c die Fläche unter [mm] 1/x^2,
[/mm]
in b ist gefragt, was passiert, wenn c immer größer wird, da könnte ja auch die Fläche beliebig groß werden, tut sie aber nicht!
sondern sie hat nen endlichen Wert, der immer näher an ... rückt, je größer c wird.
Gruss leduart
|
|
|
|
|
danke für deine hilfe!
ich hab jetzt beide graphen skizziert, sie schneiden sich im punkt (1;1), oder? bracuht man das?
wir haben mal gelernt, dass man, wenn man das flächenstück zwischen zwei graphen rausfinden will, den einen vom andern abziehen muss und dann den betrag davon nehmen muss. aber in dem fall versteh ichs einfach nicht...ich hab gerechnet:
[mm] \integral_{0,5}^{c}{\left| f(x)-g(x) \right| dx} [/mm] = [mm] [\bruch{-1}{x}-\bruch{x^{2}}{2}] [/mm] von 0,5 bis c.
aber da kommt ja dann ganz was anderes raus...
wie meinst du das dann damit, dass man den einen von 0 bis 0,5 nimmt oder bis 1? wie kommt man darauf?
und was ist, wenn ich den graphen nicht skizzieren kann und ihn mir nicht vorstellen kann, gibt es nicht eine allgemeine lösung für solche fälle?
danke...:)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:00 So 09.03.2008 | Autor: | leduart |
Hallo
> ich hab jetzt beide graphen skizziert, sie schneiden sich
> im punkt (1;1), oder? bracuht man das?
Ja, die Schnittpunkte braucht man immer.
> wir haben mal gelernt, dass man, wenn man das flächenstück
> zwischen zwei graphen rausfinden will, den einen vom andern
> abziehen muss und dann den betrag davon nehmen muss. aber
> in dem fall versteh ichs einfach nicht...ich hab
> gerechnet:
so einfach ist das falsch! Wenn man die Flache zwischne 2 Graphen ausrechnen will, muss man zwar den Betrag des Integrals ausrechnen, aber immer nur von Schnittpunkt zu Schnittpunkt. Wenn es nur 2 Schnittpunkte gibt, hast du nur ein Integral. wenn es 3 gibt 2 usw.
Wenn sie sich nicht schneiden kannst du auch einfach von a bis b int. wenn a und b angegeben sind.
> [mm]\integral_{0,5}^{c}{\left| f(x)-g(x) \right| dx}[/mm] =
> [mm][\bruch{-1}{x}-\bruch{x^{2}}{2}][/mm] von 0,5 bis c.
> aber da kommt ja dann ganz was anderes raus...
Hier musst du wirklich skizzieren, deshalb sind die fkt ja auch so einfach. genau muss dabei nur der Schnittpunkt sein, den man leicht ausrechnen kann.
Und jetzt die Aufgabe genau lesen: da steht nicht zwischen den Kurven sondern zw. den Kurven und der x- Achse.
Und dann siehst du an der Skizze, dass das von 0,5 bis 1 nur unter [mm] x^3 [/mm] ist also musst du von 0,5 bis 1 nur [mm] x^3 [/mm] integr.
danach ist es nur unter [mm] 1/x^2, [/mm] also musst du von 1 bis c nur über [mm] 1/x^2 [/mm] integrieren.
Und eine grobe Skizze sollte man sich immer machen!
Gruss leduart
|
|
|
|
|
danke, habs verstanden!!:)
|
|
|
|