matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnunguneigentliche Integrale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integralrechnung" - uneigentliche Integrale
uneigentliche Integrale < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

uneigentliche Integrale: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 Di 04.11.2008
Autor: noobo2

Hallo,
ich habe flgende frage:
und zwar verstehe ich das bestimmen uneiegntlicher Integrale nicht ganz.
das Integral [mm] \integral_{-\infty}^{-1}{ \bruch{1}{x^5}dx} [/mm] kann bestimmt werden, dazu wird die die stammfunktion ausgerechnet
F(x)= [mm] \bruch{-1}{4*x^4} [/mm] setzt man nun aber die beiden intervallgrenzen ein, so komtm ja nur schwachsinn raus also vor allem
[mm] \bruch{-1}{4*(-(\infty)^4} [/mm]   und eigentlich haben wir das so gelernt, dass sobald in dieser Rechung etwas schwachsinniges rauskommt das Integral auch in ehct nicht existiert, da in dne beispielrechnungen z.B. f(x) = [mm] (1/x^2) [/mm] ja mit den grenzen + unendlich und 1 , dass + unendlich seinen teil der stammfunktion gegen 0 gehen lässt.
noch eine zweite frage warum kann an dieses integrla nciht bestimmen [mm] \integral_{-\infty}^{-1}{ \bruch{1}{x^{2/3}}dx}, [/mm] weil die stammfunktion ja lautet:
3*x^(1/3) . bildlich betrachtet geht die funktion für minus unendlich doch geegn 0 , diese hilfe benutzt man ja auch anscheind bei meiner ersten funktion, weshlab geht das also hier nicht?

        
Bezug
uneigentliche Integrale: Denkanstoß
Status: (Antwort) fertig Status 
Datum: 21:33 Di 04.11.2008
Autor: dormant

Hi!

Also erst etwas Grundsätzliches zu uneigentlichen Integralen.

[mm] \integral_{-\infty}^{b}{f(x) dx}:=\limes_{a\rightarrow -\infty}\integral_{a}^{b}{f(x) dx}=F(b)-\limes_{a\rightarrow -\infty}F(a), [/mm] falls diese Grenze existiert. Ansonsten ist der Integralwert nicht definiert oder wird [mm] als\pm\infty [/mm] angenommen. D.h. man kann nicht einfach [mm] \infty [/mm] für eine der beiden Integralgrenzen einsetzen.


>  [mm]\bruch{-1}{4*(-(\infty)^4}[/mm]   und eigentlich haben wir das
> so gelernt, dass sobald in dieser Rechung etwas
> schwachsinniges rauskommt das Integral auch in ehct nicht
> existiert, da in dne beispielrechnungen z.B. f(x) = [mm](1/x^2)[/mm]

Bei der Integration gibt es eine weitere Falle, auf die man achten muss. Die wird gerade durch das Beispiel f=1/x immer illustriert. Wenn man 1/x auf [a;b] mit a>0 integriert ist alles i.O. Wenn aber [mm] a\le [/mm] 0, ist dann der Integrand f=1/x bei Null nicht definiert! Insbesondere wird der Integralwert dann i.A. nicht existieren, d.h. [mm] =\infty. [/mm] Um das genau zu behandeln muss man den Integral aufspalten und zur Grenze übergehen, also

[mm] \integral_{-\infty}^{b}{\bruch{1}{x} dx}=\limes_{a\rightarrow -\infty}\limes_{c\rightarrow 0, c<0}\integral_{a}^{c}{\bruch{1}{x} dx}+\limes_{d\rightarrow 0, d>0}\integral_{d}^{b}{\bruch{1}{x} dx}. [/mm]

Gruß,
dormant

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]