Übungen < Physik < Naturwiss. < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:48 Di 19.01.2010 | Autor: | Ice-Man |
Ich habe hier mal 2 Aufgaben gerechnet, und habe mal zu den Lösungen ein paar Fragen.
Aufgabe a)
Auf dem Umfang einer Kreisscheibe m=10kg d=0,5m ist ein Seil aufgewickelt. Am Ende des Seils wird ein Körper der Masse 1kg befestigt, der die Scheibe in Rotation versetzt.
Welche Drehzahl hat die Scheibe nach 10s, und welche Beschleunigung erfährt der Körper der am Seil "hängt"
Aufgabe b)
Eine horizontal liegende Feder wird um 8cm gedehnt, wenn eine Kraft von 56N auf sie einwirkt. An diese Feder wird ein Körper der masse 500g befestigt und die Feder um 10cm aus ihrer Gleichgewichtslage in horizontaler Richtung gedehnt. Berechnen sie die Dauer der Schwingung und die max. Beschleunigung der Feder.
Zu a)
Ich habe jetzt berechnet,
J=0,3125 [mm] kg*m^{2}
[/mm]
M=2,4525Nm
[mm] \alpha=7,848s^{-2}
[/mm]
Und daraus
[mm] \omega=78,48s^{-1}
[/mm]
dann habe ich
[mm] n=12,5s^{-1} [/mm] erhalten
und
[mm] a=\alpha*r
[/mm]
[mm] a=1,96m*s^{-2}
[/mm]
Die Ergebnisse stimmen ja soweit,
also meine Fragen.
Wenn ich jetzt [mm] \phi [/mm] ausrechne, dann rechne ich ja den Winkel (also Weg) aus, den die Scheibe insgesamt zurücklegt.
Und wenn ich das dann dur [mm] 2\pi [/mm] teile dann die Gesamten Umdrehungen die zurückgelegt werden, oder?
Und ich habe ja jetzt die Umdrehungen die in den 10s zurückgelegt werden mit der Formel für gleichförmige Rotations berechnet.
Kann ich das überhaupt machen? Ich mein, es wird ja beschleunigt.
Zu b)
Ich habe berechnet,
D=700Nm
T=0,17s
und [mm] v=x_{max}*\omega
[/mm]
[mm] v=3,7m*s^{-1}
[/mm]
Die Ergebnisse stimmen ja soweit auch,
meine Fragen,
in der Aufgabenstellung steht ja das die Feder durch eine KRaft um 8cm gedehnt wird.
Müsste es aber vom logischen nicht "gestaucht" heißen, ich meine es wirkt doch eine "Kraft" ein, also würde ich denken es wird "gedrückt"
Ok, und dann, wollt ich nur mal noch wissen, ob ich jetzt richtig denke, aber wenn da das "Gewicht" wirkt, dann wird ja beschleunigt.
Also "bewegt" sich ja die Feder um 18cm, (8cm bis zum Nullpunkt, und dann weiter bis zur Amplitute von 10cm) Stimmt das soweit?
Also ich glaube ich habe das hier alles ein wenig kompliziert formuliert, aber ich hoff ihr konntet folgen, bzw. mir helfen.
Ich sage schon einmal vielen Dank.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:55 Mi 20.01.2010 | Autor: | leduart |
Hallo
> Ich habe hier mal 2 Aufgaben gerechnet, und habe mal zu den
> Lösungen ein paar Fragen.
>
> Aufgabe a)
> Auf dem Umfang einer Kreisscheibe m=10kg d=0,5m ist ein
> Seil aufgewickelt. Am Ende des Seils wird ein Körper der
> Masse 1kg befestigt, der die Scheibe in Rotation versetzt.
> Welche Drehzahl hat die Scheibe nach 10s, und welche
> Beschleunigung erfährt der Körper der am Seil "hängt"
>
> Aufgabe b)
> Eine horizontal liegende Feder wird um 8cm gedehnt, wenn
> eine Kraft von 56N auf sie einwirkt. An diese Feder wird
> ein Körper der masse 500g befestigt und die Feder um 10cm
> aus ihrer Gleichgewichtslage in horizontaler Richtung
> gedehnt. Berechnen sie die Dauer der Schwingung und die
> max. Beschleunigung der Feder.
>
>
>
> Zu a)
> Ich habe jetzt berechnet,
> J=0,3125 [mm]kg*m^{2}[/mm]
> M=2,4525Nm
> [mm]\alpha=7,848s^{-2}[/mm]
>
> Und daraus
> [mm]\omega=78,48s^{-1}[/mm]
> dann habe ich
> [mm]n=12,5s^{-1}[/mm] erhalten
> und
> [mm]a=\alpha*r[/mm]
> [mm]a=1,96m*s^{-2}[/mm]
> Die Ergebnisse stimmen ja soweit,
> also meine Fragen.
> Wenn ich jetzt [mm]\phi[/mm] ausrechne, dann rechne ich ja den
> Winkel (also Weg) aus, den die Scheibe insgesamt
> zurücklegt.
> Und wenn ich das dann dur [mm]2\pi[/mm] teile dann die Gesamten
> Umdrehungen die zurückgelegt werden, oder?
Ja
> Und ich habe ja jetzt die Umdrehungen die in den 10s
> zurückgelegt werden mit der Formel für gleichförmige
> Rotations berechnet.
ne, du hast die Winkelgeschw. bzw Umdrehungszahl im Moment 10 s errechnet. den gesamten zurueckgelegten Winkel musst du wie den Gesamtweg bei beschl. Bewegung nicht aus v*t sondern?? ausrechnen.
> Kann ich das überhaupt machen? Ich mein, es wird ja
> beschleunigt.
richtig gesehen!
>
> Zu b)
> Ich habe berechnet,
> D=700Nm
> T=0,17s
> und [mm]v=x_{max}*\omega[/mm]
> [mm]v=3,7m*s^{-1}[/mm]
> Die Ergebnisse stimmen ja soweit auch,
> meine Fragen,
> in der Aufgabenstellung steht ja das die Feder durch eine
> KRaft um 8cm gedehnt wird.
> Müsste es aber vom logischen nicht "gestaucht" heißen,
> ich meine es wirkt doch eine "Kraft" ein, also würde ich
> denken es wird "gedrückt"
ob eine Kraft wirkt haengt doch nicht von Druecken oder Ziehen ab! Du kannst mit Kraft ne Feder zusammendruecken oder dehnen.
> Ok, und dann, wollt ich nur mal noch wissen, ob ich jetzt
> richtig denke, aber wenn da das "Gewicht" wirkt, dann wird
> ja beschleunigt.
das Ganze ist horizontal, also wirkt kein Gewicht, nur die Federkraft!
> Also "bewegt" sich ja die Feder um 18cm, (8cm bis zum
> Nullpunkt, und dann weiter bis zur Amplitute von 10cm)
> Stimmt das soweit?
>
Nein. die 8cm sind nur die Angabe um D zu finden. mit den 10cm und den 500g haben die nix zu tun, aus der Ruhelage um 10cm dabei ist egal wo die Ruhelage ist!
Gruss leduart
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:46 Mi 20.01.2010 | Autor: | Ice-Man |
Also nochmal ne kurze Frage zu der Feder.
Dann ist die Aufgabe wohl so gemeint, das die Feder durch eine "Kraft" um 8cm gedehnt wird, und dann auf Grund des Gewichtes noch weiter gedehnt wird.
Meint man das so?
Danke
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:11 Mi 20.01.2010 | Autor: | chrisno |
Nein. Der erste Satz könnte auch beginnen: Zur Bestimmung der Federkonstanten erhalten sie folgende Information:
Mit der Federkonstanten kannst Du dann die Aufgabe mit den Werten aus dem zweiten Satz lösen.
|
|
|
|