matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenÜbergangsmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Übergangsmatrix
Übergangsmatrix < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übergangsmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Mi 28.05.2008
Autor: belf

Aufgabe
Man betrachtet die Basis A = [mm] a_{1}' [/mm] = [8, -6, 7] , [mm] a_{2}' [/mm] = [-16, 7, -13], [mm] a_{3}' [/mm] = [9, -3, 7] und B = [mm] b_{1}' [/mm] = [1, -2, 1], [mm] b_{2}' [/mm] = [3, -1, 2], [mm] b_{3}' [/mm] = [2, 1, 2]. Finden Sie die Übergangsmatrix  die den Übergang von der Basis A in die Basis B beschreibt.

Hallo,

Also ich habe T als T = [mm] \pmat{ a & b & c \\ d & e & f \\ g & h & i } [/mm] definiert.

[mm] \pmat{ b_{1} \\ b_{2} \\ b_{3} } [/mm] = T . [mm] \pmat{ a_{1} \\ a_{2} \\ a_{3} } [/mm]

Also :

[mm] b_{1} [/mm] = a [mm] \pmat{ 8 \\ -6 \\ 7 } [/mm] + b [mm] \pmat{ -16 \\ 7 \\ -13 } [/mm] + c [mm] \pmat{ 9 \\ -3 \\ 7 } [/mm] (1)

[mm] b_{2} [/mm] = d [mm] \pmat{ 8 \\ -6 \\ 7 } [/mm] + e [mm] \pmat{ -16 \\ 7 \\ -13 } [/mm] + f [mm] \pmat{ 9 \\ -3 \\ 7 } [/mm] (2)

[mm] b_{3} [/mm] = g [mm] \pmat{ 8 \\ -6 \\ 7 } [/mm] + h [mm] \pmat{ -16 \\ 7 \\ -13 } [/mm] + i [mm] \pmat{ 9 \\ -3 \\ 7 } [/mm] (3)

Zu (1) :

1 = 8a - 16b + 9c
-2= -6a + 7b - 3c
1 = 7a - 13b + 7c

a = 1  b = 1  c = 1

Zu (2) :

3 = 8d - 16e + 9f
-1 = -6d + 7e - 3f
2 = 7d - 13e + 7f

d=1 e=2 f=3

Zu (3) :

2= 8g - 16h + 9i
1= -6g + 7h - 3i
2= 7g - 13h + 7i

g= -3 h= -5  i= -6

Also :

T = [mm] \pmat{ 1 & 1 & 1 \\ 1 & 2 & 3 \\ -3 & -5 & -6 } [/mm]

Aber es scheint falsch zu sein, da die Lösung T = [mm] \pmat{ 3 & 1 & 1 \\ -3 & -3 & -2 \\ 1 & 2 & 1 } [/mm] lautet.

Sehr wahrscheinlich habe ich irgendetwas falsch verstanden und darum habe ich ein anderes Ergebnis bekommen. Wie soll ich es machen ?

Vielen Dank

        
Bezug
Übergangsmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 18:55 Do 29.05.2008
Autor: Sigrid

Hallo belf,

> Man betrachtet die Basis A = [mm]a_{1}'[/mm] = [8, -6, 7] , [mm]a_{2}'[/mm] =
> [-16, 7, -13], [mm]a_{3}'[/mm] = [9, -3, 7] und B = [mm]b_{1}'[/mm] = [1, -2,
> 1], [mm]b_{2}'[/mm] = [3, -1, 2], [mm]b_{3}'[/mm] = [2, 1, 2]. Finden Sie die
> Übergangsmatrix  die den Übergang von der Basis A in die
> Basis B beschreibt.
>  Hallo,
>  
> Also ich habe T als T = [mm]\pmat{ a & b & c \\ d & e & f \\ g & h & i }[/mm]
> definiert.
>  
> [mm]\pmat{ b_{1} \\ b_{2} \\ b_{3} }[/mm] = T . [mm]\pmat{ a_{1} \\ a_{2} \\ a_{3} }[/mm]
>
> Also :
>  
> [mm]b_{1}[/mm] = a [mm]\pmat{ 8 \\ -6 \\ 7 }[/mm] + b [mm]\pmat{ -16 \\ 7 \\ -13 }[/mm]
> + c [mm]\pmat{ 9 \\ -3 \\ 7 }[/mm] (1)
>  
> [mm]b_{2}[/mm] = d [mm]\pmat{ 8 \\ -6 \\ 7 }[/mm] + e [mm]\pmat{ -16 \\ 7 \\ -13 }[/mm]
> + f [mm]\pmat{ 9 \\ -3 \\ 7 }[/mm] (2)
>  
> [mm]b_{3}[/mm] = g [mm]\pmat{ 8 \\ -6 \\ 7 }[/mm] + h [mm]\pmat{ -16 \\ 7 \\ -13 }[/mm]
> + i [mm]\pmat{ 9 \\ -3 \\ 7 }[/mm] (3)
>  
> Zu (1) :
>  
> 1 = 8a - 16b + 9c
>  -2= -6a + 7b - 3c
>  1 = 7a - 13b + 7c
>  
> a = 1  b = 1  c = 1
>  
> Zu (2) :
>  
> 3 = 8d - 16e + 9f
>  -1 = -6d + 7e - 3f
>  2 = 7d - 13e + 7f
>  
> d=1 e=2 f=3
>  
> Zu (3) :
>
> 2= 8g - 16h + 9i
>  1= -6g + 7h - 3i
>  2= 7g - 13h + 7i
>  
> g= -3 h= -5  i= -6
>  
> Also :
>  
> T = [mm]\pmat{ 1 & 1 & 1 \\ 1 & 2 & 3 \\ -3 & -5 & -6 }[/mm]
>  
> Aber es scheint falsch zu sein, da die Lösung T = [mm]\pmat{ 3 & 1 & 1 \\ -3 & -3 & -2 \\ 1 & 2 & 1 }[/mm]
> lautet.
>  
> Sehr wahrscheinlich habe ich irgendetwas falsch verstanden
> und darum habe ich ein anderes Ergebnis bekommen. Wie soll
> ich es machen ?

Du willst doch Vektoren, die durch die Basis A dargestellt sind, durch die Basis B ausdrücken. Also musst Du herausfinden, wie sich die Vektoren der Basis A durch die Basis B darstellen lassen. Du hast aber das umgekehrte gemacht.

Gruß
Sigrid

>  
> Vielen Dank


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]