matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisÜber sinus (x^2) integrieren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Komplexe Analysis" - Über sinus (x^2) integrieren
Über sinus (x^2) integrieren < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Über sinus (x^2) integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Mo 30.04.2007
Autor: Milka_Kuh

Aufgabe
Seien R > 0 und die Wege [mm] \gamma_{1}(t)=t, \gamma_{2}(t)=R+it, \gamma_{3}(t)=t(1+i), [/mm] mit jeweils t [mm] \in [/mm] [0,R].
Berechne: [mm] \integral_{0}^{\infty}{sin(x^{2}) dx} [/mm] und [mm] \integral_{0}^{\infty}{cos(x^{2}) dx}, [/mm] indem man das Gauß-Integral [mm] \integral_{0}^{\infty}{e^{-x^{2}} dx}=\bruch{\wurzel{\pi}}{2} [/mm] verwendet.

Hallo,

ich weiß, dass [mm] \integral_{0}^{\infty}{sin(x^{2}) dx}=\integral_{0}^{\infty}{cos(x^{2}) dx}= \bruch{\wurzel{2\pi}}{4} [/mm] sein muss. Aber wie kommt man auf dieses Ergebnis [mm] \bruch{\wurzel{2\pi}}{4}? [/mm] Bei der Aufgabe ist bereits bekannt/bewiesen worden, dass
[mm] \integral_{\gamma_{3}}^{}{e^{-z^{2}} dz} [/mm] =  [mm] \integral_{\gamma_{1}}^{}{e^{-z^{2}} dz} [/mm] +  [mm] \integral_{\gamma_{2}}^{}{e^{-z^{2}} dz} [/mm] gilt, und dass  [mm] \integral_{\gamma_{2}}^{}{e^{-z^{2}} dz} \to [/mm] 0 für R [mm] \to \infty [/mm]
Kann mir da jemand helfen, wie ich auf die Tatsache [mm] \integral_{0}^{\infty}{sin(x^{2}) dx}=\integral_{0}^{\infty}{cos(x^{2}) dx}= \bruch{\wurzel{2\pi}}{4} [/mm] komme?
Vielen Dank,
Milka

        
Bezug
Über sinus (x^2) integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 10:13 Di 01.05.2007
Autor: wauwau

[mm] e^{-ix^2}=cos(x^2)-i*sin(x^2) [/mm]

Dann schau dir deine Integrationswege an..... und verwende obiges...

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]