matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenüber länge der Kurve integrier
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - über länge der Kurve integrier
über länge der Kurve integrier < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

über länge der Kurve integrier: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:59 Mo 08.05.2006
Autor: Trivalik

Aufgabe
Integrieren Sie die Funktion [mm]f(x,y)=\bruch{y^{2}}{x^{2}}, x\not=0[/mm] längs der Kurve C mit der Gleichung [mm]x^{3}-y^{2}=0,1\le x\le 8,y/ge0[/mm]  

Wie geht man hier ran um aus dem letzen die Parameterdarstellung zu machen?
Ich denke das Paramter [mm] \vektor{t^{2}\\t^{3}} [/mm] weis es aber nicht genau, da ich mir irgendwie denke das die exponenten andersrum sein müste, nur weis ich net wie ich da nun rangehen soll. Nur wie sind jetzt die Intervalle? Sind diese immer noch [1,8]?

Falls man nun das Integral aufstellt wie sind dann die Grenzen, auch 1 und 8 oder hab ich bei Komolition etwas mit [mm] \wurzel{8} [/mm] gesehn?

Wäre dankbar über Hilfe!

        
Bezug
über länge der Kurve integrier: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:10 Di 09.05.2006
Autor: Leopold_Gast

Der Integrand [mm]f[/mm] braucht doch bei einem zweidimensionalen Kurvenintegral eine zweite Komponente, also

[mm]f(x,y) = \left( \, u(x,y) \, , \, v(x,y) \, \right)[/mm]

Da scheint mir etwas in der Angabe nicht zu stimmen.

Bezug
                
Bezug
über länge der Kurve integrier: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:58 Di 09.05.2006
Autor: MatthiasKr

wieso, man kann doch auch eine skalare funktion über eine kurve integrieren?!


VG
Matthias

Bezug
        
Bezug
über länge der Kurve integrier: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Di 16.05.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]