matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis(Über-)Abzählbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - (Über-)Abzählbarkeit
(Über-)Abzählbarkeit < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

(Über-)Abzählbarkeit: "Definition"
Status: (Frage) beantwortet Status 
Datum: 00:17 Fr 29.10.2004
Autor: Bastiane

Hallo ihr!

Hätte da mal ne Frage zur Abzählbarkeit und so.
Abzählbar bedeutet doch, dass man alle Elemente einer Menge abzählen kann, also dass man ein System angeben kann, wie man alle Elemente auf jeden Fall irgendwann einmal erwischt, selbst wenn die Menge unendlich ist, oder? (Das geht dann bei den rationalen Zahlen nach diesem Schema immer so im Zickzack oder wie man das nennt.)

Und überabzählbar heißt dann einfach, dass es kein solches "System" gibt?

Und gelten diese Definitionen nur für unendliche Mengen oder kann es auch eine endliche, überabzählbare Menge geben? Eigentlich nicht, oder?

Sorry, das ist eigentlich Ana 1 Stoff, aber im Moment scheint es bei uns auch nicht ganz unbedeutend zu sein. Würde mich halt mal interessieren, und vielleicht hilft's mir ja weiter...

Viele Grüße und gute Nacht ;-)

Bastiane


        
Bezug
(Über-)Abzählbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 03:38 Fr 29.10.2004
Autor: Marc

Hallo Bastiane,

> Hätte da mal ne Frage zur Abzählbarkeit und so.
>  Abzählbar bedeutet doch, dass man alle Elemente einer
> Menge abzählen kann, also dass man ein System angeben kann,

Ein bisschen unglücklich, den zu erklärenden Begriff in der Erklärung selbst zu benutzen.

> wie man alle Elemente auf jeden Fall irgendwann einmal
> erwischt, selbst wenn die Menge unendlich ist, oder? (Das
> geht dann bei den rationalen Zahlen nach diesem Schema
> immer so im Zickzack oder wie man das nennt.)

Im Prinzip hast du Recht, aber man kann es nur etwas genauer erklären.
Es gibt folgende Definitionen:

Eine Menge A ist (höchstens) abzählbar, wenn es eine surjektive Abbildung [mm] $\IN\mapsto [/mm] A$ gibt (oder wenn [mm] $A=\emptyset$). [/mm]
A heißt abzählbar unendlich, wenn es eine bijektive Abbildung [mm] $\IN\mapsto [/mm] A$ gibt.
A heißt überabzählbar, wenn A nicht abzählbar ist,

Man kann sich die Abzählbarkeit einer Menge A also in etwa so vorstellen, dass man alle Element mit einer natürlichen Zahl durchnummerieren kann -- wenn die natürlichen Zahlen dazu ausreichen, um alle Element von A zu treffen, dann ist A abzählbar.
  

> Und überabzählbar heißt dann einfach, dass es kein solches
> "System" gibt?

[ok]
  

> Und gelten diese Definitionen nur für unendliche Mengen
> oder kann es auch eine endliche, überabzählbare Menge
> geben? Eigentlich nicht, oder?

Stimmt, jede endliche Menge ist (höchstens) abzählbar.

Viele Grüße,
Marc



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]