matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysistotales Differential
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - totales Differential
totales Differential < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

totales Differential: Frage
Status: (Frage) beantwortet Status 
Datum: 17:05 Do 23.06.2005
Autor: holg47

Hallo!

Ich verstehe nicht genau, was anschaulich das totale Differential ist (also im n-dimensionalen Raum). Ich hab was von Hyperebene gelesen??
Kann mir da jemand vielleicht eine anschauliche Erklärung liefern?

Ich weiß, dass eine Funktion im Punkt a total diffbar ist, wenn es eine Matrix A gibt, so dass:

f(x) = f(a) + A(x-a) + r(x) mit lim( [mm] x\to [/mm] a) r(x) =0

Aber anschaulich ist mir hier nichts klar!

Vielen Dank!!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
totales Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 20:41 Do 23.06.2005
Autor: SEcki


> Ich verstehe nicht genau, was anschaulich das totale
> Differential ist (also im n-dimensionalen Raum). Ich hab
> was von Hyperebene gelesen??
> Kann mir da jemand vielleicht eine anschauliche Erklärung
> liefern?

Das totale Differential ist eine lineare Abbildung - das ergibt dann eine affin lineare Abbildung in dem Punkt. Die Existenz des totalen Differentials heisst, das die Funktion in der Nähe sich genauso verhält wie eine (affin) lineare Funktion. Das ist genau das gleiche wie im eindimensionmalen: existiert das die Ableitung, dann kann man ja eine Tangente an den Grapgen legen - und nahe an der Stelle erkennt man kaum Unterschiede zwischen dieser und der eigentlichen Funktion.

Noch Fragen?

SEcki

Bezug
                
Bezug
totales Differential: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:10 Fr 24.06.2005
Autor: holg47

Hallo SEcki!

Was bedeutet hier "affine" lineare Abbildung?

Und wie kann ich das totale Differential denn berechnen?

Ich kann die Existenz dadurch zeigen, dass die Funktion f stetig partiell differenzierbar ist. Aber wie berechnen ich dann das totale Differential?

Vielen Dank!!

Bezug
                        
Bezug
totales Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Sa 25.06.2005
Autor: SEcki


> Was bedeutet hier "affine" lineare Abbildung?

Das gleiche wie sonst: eine lineare Abbildung, die noch um einen Vektor verschoben ist.

> Und wie kann ich das totale Differential denn berechnen?

Jacobi-Matrix?!?

> Ich kann die Existenz dadurch zeigen, dass die Funktion f
> stetig partiell differenzierbar ist. Aber wie berechnen ich
> dann das totale Differential?

Jacobi-MatriX!

SEcki

Bezug
                                
Bezug
totales Differential: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:36 Mo 27.06.2005
Autor: holg47

Hallo!

Aber wie kann ich mir das totale Differential in einem Punkt a (also eine Abbildung  f: [mm] \IR^n [/mm] nach [mm] \IR [/mm] ) geometrisch vorstellen?
Bei einer Funktion im [mm] \IR [/mm] ist ja die Ableitung gleich der Steigung der Tagente im Pkt a!

Vielen Dank!

Bezug
                                        
Bezug
totales Differential: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Mo 27.06.2005
Autor: SEcki


> Aber wie kann ich mir das totale Differential in einem
> Punkt a (also eine Abbildung  f: [mm]\IR^n[/mm] nach [mm]\IR[/mm] )
> geometrisch vorstellen?


Wie gesagt: als linaere Approximation. Im eindimensionalen ist das totale Differential auch eher die Tangente, als die Steigung. Mehr Geo gibt's da nicht.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]