test-anhang < Test-Forum < Internes < Vorhilfe
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:59 Sa 14.05.2005 | Autor: | Loddar |
blabla
Dateianhänge: Anhang Nr. 1 (Typ: pdf) [nicht öffentlich]
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:57 Fr 06.01.2006 | Autor: | Jette87 |
ich muss das auch mal austesten
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 22:33 Mi 25.01.2006 | Autor: | MonoTon |
15h rechnet der server jetzt schon an dem ding herum?!
wahnsinn. ich würde gerne wissen mit welchem teX-editor man solche riesenformels basteln kann ^^ ich glaube nicht dass diese formel, oder das was es einmal werden soll - in den nächsten paar stunden, mit dem editor von der page geschrieben wurde. da tippt man sich die finger fusslig.
aber das thema hab ich eh schon gepostet.
na gut-load weiterhin ^^
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:01 So 15.05.2005 | Autor: | Karl_Pech |
[m]\left[ x=-{{\sqrt{-{{\left(6\,\left({{\sqrt{27\,a^4-256\,b}\,b
}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}-3\,a^
2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b
}\over{2}}\right)^{{{1}\over{3}}}+8\,b\right)\,\sqrt{{{12\,\left({{
\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}
\right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b
}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b
}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b
}\over{2}}\right)^{{{1}\over{3}}}}}}+3\,\sqrt{3}\,a^3\,\left({{
\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}
\right)^{{{1}\over{3}}}}\over{\left({{\sqrt{27\,a^4-256\,b}\,b
}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}
}\over{2\,\sqrt{6}\,\left({{12\,\left({{\sqrt{27\,a^4-256\,b}\,b
}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^
2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b
}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4-
256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{
3}}}}}\right)^{{{1}\over{4}}}}}-{{\sqrt{{{12\,\left({{\sqrt{27\,a^4-
256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{
3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{
a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27
\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1
}\over{3}}}}}}}\over{4\,\sqrt{3}}}+{{a}\over{4}},x={{\sqrt{-{{\left(
6\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b
}\over{2}}\right)^{{{2}\over{3}}}-3\,a^2\,\left({{\sqrt{27\,a^4-256
\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}
}+8\,b\right)\,\sqrt{{{12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6
\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\,
\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{
2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b}
\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}
+3\,\sqrt{3}\,a^3\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3
}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}\over{\left({{\sqrt{27
\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1
}\over{3}}}}}}}\over{2\,\sqrt{6}\,\left({{12\,\left({{\sqrt{27\,a^4-
256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{
3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{
a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27
\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1
}\over{3}}}}}\right)^{{{1}\over{4}}}}}-{{\sqrt{{{12\,\left({{\sqrt{
27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{
2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,
\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{
\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{
2}}\right)^{{{1}\over{3}}}}}}}\over{4\,\sqrt{3}}}+{{a}\over{4}},x=-
{{\sqrt{-{{\left(6\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{
3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}-3\,a^2\,\left({{
\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}
\right)^{{{1}\over{3}}}+8\,b\right)\,\sqrt{{{12\,\left({{\sqrt{27\,a
^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2
}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{
3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{
\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}
\right)^{{{1}\over{3}}}}}}-3\,\sqrt{3}\,a^3\,\left({{\sqrt{27\,a^4-
256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{
3}}}}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^
2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}}\over{2\,\sqrt{6}\,\left({{
12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b
}\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256
\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}
}+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+
{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}\right)^{{{1}\over{4}}}}}
+{{\sqrt{{{12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+
{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,
a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1
}\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,
\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}}\over{4\,
\sqrt{3}}}+{{a}\over{4}},x={{\sqrt{-{{\left(6\,\left({{\sqrt{27\,a^4
-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2
}\over{3}}}-3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{
3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+8\,b\right)\,\sqrt{{{
12\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b
}\over{2}}\right)^{{{2}\over{3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256
\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}
}+16\,b}\over{\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+
{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}-3\,\sqrt{3}\,a^3\,
\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{
2}}\right)^{{{1}\over{3}}}}\over{\left({{\sqrt{27\,a^4-256\,b}\,b
}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{3}}}}}}
}\over{2\,\sqrt{6}\,\left({{12\,\left({{\sqrt{27\,a^4-256\,b}\,b
}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{3}}}+3\,a^
2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b
}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27\,a^4-
256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1}\over{
3}}}}}\right)^{{{1}\over{4}}}}}+{{\sqrt{{{12\,\left({{\sqrt{27\,a^4-
256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{2}\over{
3}}}+3\,a^2\,\left({{\sqrt{27\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{
a^2\,b}\over{2}}\right)^{{{1}\over{3}}}+16\,b}\over{\left({{\sqrt{27
\,a^4-256\,b}\,b}\over{6\,\sqrt{3}}}+{{a^2\,b}\over{2}}\right)^{{{1
}\over{3}}}}}}}\over{4\,\sqrt{3}}}+{{a}\over{4}} \right][/m]
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:22 So 15.05.2005 | Autor: | Karl_Pech |
|
|
|
|