matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysistaylor polynome
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Schul-Analysis" - taylor polynome
taylor polynome < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

taylor polynome: untersuchung der güte
Status: (Frage) beantwortet Status 
Datum: 19:08 Mo 14.03.2005
Autor: wasting_the_dawn

hallo!
ich weiß, es ist egtl. ein bisschen zu spät, noch mit einer farge zu kommen, aber ich bin gerade am ende meiner facharbeit über taylor-polynome angekommen und stehe nun vor dem problem, der inpliziten anweisung meines lehrers nachzukommen.
er sagte, ich solle erläutern, warum das taylor-polynom die beste näherung auf basis eines polynoms zu einer punktion sei.
dazu habe ich materiula bekommen, dass beweißt, dass eine tangente die beste lineare annäherung ist (was auch einem taylor-p. mit dem grad n=1 entspricht).
wie könnte ich nun den bogen zu meiner fragestellung, warum das t-p. nun in jedem (nicht nur linearen) fall die beste näherung darstellt?

viellicht kennt jemand ein fallbeipiel, in dem eine approximation mithilfes des taylor-polynoms nicht angebracht ist?
ich bin für jede mühe und hilfe dankbar!

viele grüße
sarah

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
taylor polynome: Was heisst "gut"
Status: (Antwort) fertig Status 
Datum: 20:46 Mo 14.03.2005
Autor: leduart

Hallo
>  ich weiß, es ist egtl. ein bisschen zu spät, noch mit
> einer farge zu kommen, aber ich bin gerade am ende meiner
> facharbeit über taylor-polynome angekommen und stehe nun
> vor dem problem, der inpliziten anweisung meines lehrers
> nachzukommen.
>  er sagte, ich solle erläutern, warum das taylor-polynom
> die beste näherung auf basis eines polynoms zu einer
> punktion sei.
>  dazu habe ich materiula bekommen, dass beweißt, dass eine
> tangente die beste lineare annäherung ist (was auch einem
> taylor-p. mit dem grad n=1 entspricht).
>  wie könnte ich nun den bogen zu meiner fragestellung,
> warum das t-p. nun in jedem (nicht nur linearen) fall die
> beste näherung darstellt?

Ich kenn ja dein Material nicht, aber das 2. Taylorpolynom ist fuer die funktion f' wieder das 1. Taylorpolynom. Aber es ist sehr unklar was es heisst, das Beste Naeherungspolynom zu sein.
Man muss diskutieren, ob man Werte, die sehr in der Naehe des Entwicklungspunktes sind moeglichst genau haben will, oder die Funktion in ihrem weiteren Verlauf moeglichst genau kennen will. Ein bekanntes Beispiel wo "gut" oder "bestes" ziemlich sinnlos ist ist [mm] f(x)=e^-\bruch{1}{x^{2}}. [/mm]
bei Null nicht definiert aber leicht durch f(0)=0 stetig zu ergaenzen. Dann sind alle Ableitungen bei 0 0, d.h. jedes Taylorpolynom noch so hohen Grades ist [mm] P_{n}(x)=0! [/mm] Ist das eine gute Naeherung oder nicht?
In manchen Faellen ist das Polynom,das durch einige Punkte geht besser. Viele rational Fkt. (Zaeler und Nenner Polynom werden nur auf kleinen Stuecken gut angenaehert. Schoen waer ein Programm in dem du Funktionen und die entsprechenden Taylorpollynome plottest, und mit Naeherungen durch einige Punkte vergleichst. sin(x), Taylorpolynom um 0 ,2. oder 3.dazu Polynom durch 3 oder 4 bekannte Punkte.
Allerdings kennt man einige Funktionen, von denen an einer Stelle Funktionswert und Ableitungen leicht zu berechnen sind, andere Stellen dagegen schwer. Beispiel [mm] e^{x}, [/mm] bei x=0 alle Ableitungen bekannt=1 alle anderen Stellen nicht. Damit kann man z.Bsp [mm] e=e^{1} [/mm] berechnen!
Ich hoff das hilft weiter
Gruss leduart

>  
> viellicht kennt jemand ein fallbeipiel, in dem eine
> approximation mithilfes des taylor-polynoms nicht
> angebracht ist?
>  ich bin für jede mühe und hilfe dankbar!
>  
> viele grüße
>  sarah
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]