matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionensurjektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionen" - surjektivität
surjektivität < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

surjektivität: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:00 Mi 07.11.2007
Autor: cupcake

Aufgabe
f: Y -> Z ; g: X-> Y

a) f°g surjektiv -> f surjektiv
b) f°g injektiv -> g injektiv

Ich soll das "begründen"... aber irgendwie find ich nix aussagekräftiges, bzw weiß nicht ob das reicht..

also bei a hab ich einfach nen Text, der besagt, dass wenn es (weil f°g surjektiv) ein x element X gibt dem ein z element Z zugeordnet wird, es auch bei f ein y element Y geben muss, dem ein z element Z zugeordnet ist.. aber das hört sich irgendwie zum einen falsch und zum a nderen nicht sehr mathematisch bewiesen an.. :o( weiß jemand weiter??

Danke schonmal, cupcake





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 14:08 Mi 07.11.2007
Autor: o.tacke

Hallo, cupcake!

Das kann man recht einfach über Kontraposition beweisen, d. h. man nimmt das Gegenteil an und führt das ganze auf einen Widerspruch.

Zu a)
Definition von Surjektivität: f heißt surjektiv, falls es zu jedem [mm] {n}\in{N} [/mm] (mindestens) ein [mm] {m}\in{M} [/mm] mit f(m)=n gibt.

Angenommen, [mm] {f}\circ{g} [/mm] sei surjektiv, f aber nicht surjektiv. Dann gibt es nicht zu jedem [mm] {z}\in{Z} [/mm] ein [mm] {y}\in{Y} [/mm] mit f(y)=z. Folglich existiert wegen f(g(x))=z wiederum nicht zu jedem [mm] {z}\in{Z} [/mm] ein [mm] {x}\in{X} [/mm] mit [mm] {f}\circ{g}(x)=z. [/mm] Dann ist [mm] {f}\circ{g} [/mm] nicht surjektiv.
Wir erhalten einen Widerspruch zu unserer Annahme, alsu muss f surjektiv sein.

Zu b)
Definition von Injektivität: f heißt injektiv, falls für alle [mm] {m,m'}\in{M} [/mm] gilt:
f(m)=f(m') [mm] \Rightarrow [/mm] m=m'.

Angenommen, [mm] {f}\circ{g} [/mm] sei injektiv, g aber nicht injektiv. Dann existieren [mm] {x,x'}\in{X} [/mm] für die gilt: g(x)=g(x') mit x [mm] \not= [/mm] x'
Da [mm] {f}\circ{g}(x)=f(g(x)) [/mm] folgt: f(g(x))=f(g(x')) mit x [mm] \not= [/mm] x'
Also ist [mm] {f}\circ{g} [/mm] nicht injektiv.
Wir erhalten einen Widerspruch zu unserer Annahme, also muss g injektiv sein.

Bezug
                
Bezug
surjektivität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:33 Mi 07.11.2007
Autor: cupcake

Achsooo.. das is natürlich sehr schlüssig diesen Weg zu gehen, da wär ich selbst nicht drauf gekommen.. Habs auch total nachvollzogen!
vielen Dank! :o)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]