matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebrasurjektivität
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - surjektivität
surjektivität < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

surjektivität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:35 So 10.09.2006
Autor: AriR

(Frage zuvor nicht gestellt)

hey leute

angenommen V ist ein VR und U in Unterraum von V und man hat die kanonische Projektion [mm] \pi:V\to [/mm] V/U mit [mm] v\mapsto [/mm] v+U

man sieht ja eigentlich sofort, dass diese abb. [mm] \pi [/mm] surjektiv ist, nur wie kann man das streng formal beweisen?

also zu zeigen ist ja [mm] \forall v+U\in [/mm] V/U [mm] \exists v\inV [/mm] : [mm] \pi(v)=v+U [/mm]

und das gilt ja offensichtlich nach konstruktion von [mm] \pi [/mm] aber das ist wohl kaum ein beweis oder? :D

gruß ari

        
Bezug
surjektivität: Antwort
Status: (Antwort) fertig Status 
Datum: 08:28 Mo 11.09.2006
Autor: mathiash

Hallo AriR,

es ist ja zunächst mal per definitionem   [mm] v+U=\{w\in V|v-w\in U\}. [/mm]

Weiterhin ist [mm] V\slash U=\{v+U|v\in V\}= [/mm] Menge der Äquivalenzklassen der Äquivalenzrelation

[mm] R_U:=\{(u,v)|u-v\in U\}\subseteq V\times [/mm] V, insbesondere also [mm] V\slash [/mm] U=_{def.} [mm] V\slash R_U. [/mm]

Beweisformulierung 1: Es sei [mm] v+U\in V\slash [/mm] U mit [mm] v\in [/mm] V, dann gilt nach Definition [mm] \pi(v)=v+U, [/mm] also insgesamt die Surjektivität von [mm] \pi. [/mm]

Beweisformulierung 2: Es sei [mm] A\in V\slash U=V\slash R_U, [/mm] dann ist [mm] A\neq \empyset, [/mm] wähle [mm] a\in [/mm] A, dann gilt nach Definition von [mm] \pi [/mm]

[mm] \pi(a)=A, [/mm] also ist [mm] \pi [/mm] surjektiv.

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]