summierbarkeit < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 15:03 Sa 16.12.2006 | Autor: | Thomas85 |
Hallo, habe eine frage:
Eine Teilaufgabe lautet:
Eine Folge [mm] (a_n) [/mm] komplexer Zahlen heißt quadratsummierbar wenn [mm]\summe_{n=0}^{\infty}|a_n|^2[/mm] konvegriert. [mm] a_n [/mm] und [mm] b_n [/mm] seien quadratsummierbar.
Zu zeigen: 1. Die Folge [mm] (a_n [/mm] * [mm] b_n) [/mm] ist summierbar.
2. Die Folge [mm] (a_n [/mm] + [mm] b_n) [/mm] ist quadratsummierbar.
ja, leider habe ich keinen wirklichen ansatz... nach dem hauptkriterium für summierbarkeit müsste ich für 1. zeigen dass die Menge der Partialsummen beschränkt ist, aber das hilft mir auch nicht wirklich weiter. habe auch nach artikeln bzgl. summierbarkeit (ich weiß ehrlich gesagt garnicht genau was man zeigt wenn man summierbarkeit zeigt) gesucht, aber kaum etwas gefunden.
bitte um hilfe!
mfg thomas
|
|
|
|
Hallo,
> Hallo, habe eine frage:
>
> Eine Teilaufgabe lautet:
>
> Eine Folge [mm](a_n)[/mm] komplexer Zahlen heißt quadratsummierbar
> wenn [mm]\summe_{n=0}^{\infty}|a_n|^2[/mm] konvegriert. [mm]a_n[/mm] und [mm]b_n[/mm]
> seien quadratsummierbar.
>
> Zu zeigen: 1. Die Folge [mm](a_n[/mm] * [mm]b_n)[/mm] ist summierbar.
> 2. Die Folge [mm](a_n[/mm] + [mm]b_n)[/mm] ist quadratsummierbar.
>
> ja, leider habe ich keinen wirklichen ansatz... nach dem
> hauptkriterium für summierbarkeit müsste ich für 1. zeigen
> dass die Menge der Partialsummen beschränkt ist, aber das
> hilft mir auch nicht wirklich weiter. habe auch nach
> artikeln bzgl. summierbarkeit (ich weiß ehrlich gesagt
> garnicht genau was man zeigt wenn man summierbarkeit zeigt)
> gesucht, aber kaum etwas gefunden.
>
> bitte um hilfe!
>
> mfg thomas
ihr habt nicht zufällig die hölder-ungleichung in der vorlesung gehabt, deine aufgabe ist nämlich nichts anderes als ein spezialfall dieser ungleichung. die 2. aufgabe ist dann die minkowski-ungleichung.
gruß
matthias
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:42 So 17.12.2006 | Autor: | Thomas85 |
Hallo, danke für die Antwort.
Leider hatten wir die beiden ungleichungen noch nicht.
mfg
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:19 So 17.12.2006 | Autor: | vicky |
Hallo,
verwende für die Abschätzung arithm. und geometr. Mittel. Dieses besagt [mm] \sqrt{a*b} \le \bruch{(a+b)}{2} [/mm] mit a,b [mm] \in \IR.
[/mm]
Du sollst zeigen: [mm] (a_n) [/mm] und [mm] (b_n) [/mm] quadratsummierbar <=> [mm] (a_n *b_n) [/mm] summierbar das bedeutet nichts anderes als: Wenn [mm] \summe_{n=0}^{\infty}|a_n|^2 [/mm] und [mm] \summe_{n=0}^{\infty}|b_n|^2 [/mm] konvergieren <=> [mm] \summe_{n=0}^{\infty}|a_n*b_n| [/mm] konvergiert.
Nimm nun die Folge [mm] (a_n*b_n) [/mm] und bilde das geometr. und arithmet. Mittel. Schätze die Beträge der Folge ab und wende dann weiter die Dreiecksungleichung an. Du erhälst dann eine konvergente Majorante auf der einen Seite der Ungleichung die größer als [mm] \summe_{n=0}^{\infty}|a_n*b_n| [/mm] ist und damit kannst du sagen das die Reihe [mm] \summe_{n=0}^{\infty}|a_n*b_n| [/mm] konvergiert und somit summierbar ist.
Gruß
vicky
|
|
|
|