Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft
Für
Schüler
,
Studenten
, Lehrer, Mathematik-Interessierte.
Hallo Gast!
[
einloggen
|
registrieren
]
Startseite
·
Forum
·
Wissen
·
Kurse
·
Mitglieder
·
Team
·
Impressum
Forenbaum
Forenbaum
Schulmathe
Primarstufe
Mathe Klassen 5-7
Mathe Klassen 8-10
Oberstufenmathe
Schul-Analysis
Lin. Algebra/Vektor
Stochastik
Abivorbereitung
Mathe-Wettbewerbe
Bundeswettb. Mathe
Deutsche MO
Internationale MO
MO andere Länder
Känguru
Sonstiges
Gezeigt werden alle Foren bis zur Tiefe
2
Navigation
Startseite
...
Neuerdings
beta
neu
Forum
...
vor
wissen
...
vor
kurse
...
Werkzeuge
...
Nachhilfevermittlung
beta
...
Online-Spiele
beta
Suchen
Verein
...
Impressum
Das Projekt
Server
und Internetanbindung werden durch
Spenden
finanziert.
Organisiert wird das Projekt von unserem
Koordinatorenteam
.
Hunderte Mitglieder
helfen ehrenamtlich in unseren
moderierten
Foren
.
Anbieter der Seite ist der gemeinnützige Verein "
Vorhilfe.de e.V.
".
Partnerseiten
Weitere Fächer:
Vorhilfe.de
FunkyPlot
: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Startseite
>
MatheForen
>
Integration
>
substitution
Foren für weitere Schulfächer findest Du auf
www.vorhilfe.de
z.B.
Geschichte
•
Erdkunde
•
Sozialwissenschaften
•
Politik/Wirtschaft
Forum "Integration" - substitution
substitution
<
Integration
<
Funktionen
<
eindimensional
<
reell
<
Analysis
<
Hochschule
<
Mathe
<
Vorhilfe
Ansicht:
[ geschachtelt ]
|
Forum "Integration"
|
Alle Foren
|
Forenbaum
|
Materialien
substitution: aufgabe
Status
:
(Frage) reagiert/warte auf Reaktion
Datum
:
11:01
Fr
12.02.2010
Autor
:
monstre123
Aufgabe
Integral bestimmen mit hilfe v. substitutionsr.:
[mm] \integral_{0}^{1}(\bruch{x^{2}}{1+x^{3}})dx [/mm]
mein rechnenweg:
substitution [mm] y=g(x)=x^{3}+1 [/mm]
dann ist [mm] \bruch{dy}{dx}=g'(x)=3x^{2}dx=dy [/mm]
folglich: [mm] \integral_{0}^{1}(\bruch{x^{2}}{1+x^{3}})dx=\integral_{0}^{1}(\bruch{x^2}{y} [/mm]
hier komm ich nicht weiter bzw. ist überhaupt das vorhergehende richtig?
Bezug
substitution: Mitteilung
Status
:
(Mitteilung) Reaktion unnötig
Datum
:
11:06
Fr
12.02.2010
Autor
:
felixf
Dies ist ein Doppelpost, siehe
hier
.
Bezug
Ansicht:
[ geschachtelt ]
|
Forum "Integration"
|
Alle Foren
|
Forenbaum
|
Materialien
www.schulmatheforum.de
[
Startseite
|
Forum
|
Wissen
|
Kurse
|
Mitglieder
|
Team
|
Impressum
]