matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemestrahlensatz-anwendung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - strahlensatz-anwendung
strahlensatz-anwendung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

strahlensatz-anwendung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:23 Sa 14.04.2007
Autor: faker1818

Aufgabe
Die Katheten eines rechtwinkligen Dreiecke sind 12 cm und 8 cm lang.
Diesem Dreieck ist ein möglichst großes Rechteck einzubeschreiben, von dem zwei Seiten auf den Katheten des Dreieckes liegen.

hi,

ich weiß schon, dass ich hier den strahlensatz " 12/8 = 12-a/b" anwenden muss...

jedoch frage ich mich, warum nicht " 12/8 = 12-a/8-b "?

        
Bezug
strahlensatz-anwendung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Sa 14.04.2007
Autor: Zwerglein

Hi, faker,

> Die Katheten eines rechtwinkligen Dreiecke sind 12 cm und 8
> cm lang.
>  Diesem Dreieck ist ein möglichst großes Rechteck
> einzubeschreiben, von dem zwei Seiten auf den Katheten des
> Dreieckes liegen.

  

> ich weiß schon, dass ich hier den strahlensatz " 12/8 =
> 12-a/b" anwenden muss...
>  
> jedoch frage ich mich, warum nicht " 12/8 = 12-a/8-b "?

Ich hab' das Dreieck so skizziert, dass die kürzere Kathete (8) die Grundlinie ist, die längere (12) steht darauf senkrecht.
Die Seiten des Rechtecks habe ich a (senkrechte Seite) und b (waagrechte) genannt.
Als Zentrum für den Strahlensatz verwende ich natürlich die (obere) Spitze des Dreiecks.

Dann gilt (in Worten):
Die beiden Parallelen (Seite b des Rechtecks und Grundlinie 8 des Dreiecks)
verhalten sich genauso wie ihre Abstände vom Zentrum, also wie 12-a zu 12.

Formel: [mm] \bruch{b}{8} [/mm] = [mm] \bruch{12-a}{12} [/mm]

Das kannst Du dann natürlich auch schreiben als:

[mm] \bruch{12}{8} [/mm] = [mm] \bruch{12-a}{b} [/mm]

Aber da Du eine der Variablen eliminieren musst, löse lieber gleich nach b auf:

b =  [mm] \bruch{8*(12-a)}{12} [/mm]

bzw.:

b =  [mm] \bruch{2*(12-a)}{3} [/mm]

oder: b = 8 - [mm] \bruch{2}{3}b [/mm]

Wie's weitergeht weißt Du?

mfG!
Zwerglein



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]