stochastik < Klassen 8-10 < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:18 So 10.05.2009 | Autor: | Fawkes |
Aufgabe | Super 6 ist eine Zusatzlotterie zum gewöhnlichen Lottospiel. Bei jeder Ziehung wird eine 6 stellige Gewinnzahl von 000000 bis 999999 gezogen, die mit der Spielschein-Nummer verglichen wird. Die Teilnahme kostet 1,25 Euro. Bestimme für jede Gewinnhöhe die Wahrscheinlichkeit.
6 richtige endziffern:100.000,000 euro
5'':6.666,00 euro
4'':666,00 euro
3'':66,00 euro
2'':2,50 euro |
hallo erstmal :) also ich wollte nur mal eben kurz nachfragen ob ich die obrige aufgabe richtig gelöst habe. zb bei zwei richtigen endziffern müsste man doch dann die ziffern von 00 bis 99 betrachten und das wären ja insgesamt 100 und da es ja zwei richtige sein sollen P(zwei richtige endziffern)= 2/100 für drei dann 3/1000 und so weiter bis 6/1000000. ist das so richtig oder hab ich nen denkfehler gemacht also mit sowas wie 5! oder so hatten wir jedenfalls noch nich, da ich im netz so eine lösung gesehen hab, die aber wohl nich richtig ist oder? schöne grüße fawkes
|
|
|
|
Hi, Fawkes,
> Super 6 ist eine Zusatzlotterie zum gewöhnlichen
> Lottospiel. Bei jeder Ziehung wird eine 6 stellige
> Gewinnzahl von 000000 bis 999999 gezogen, die mit der
> Spielschein-Nummer verglichen wird. Die Teilnahme kostet
> 1,25 Euro. Bestimme für jede Gewinnhöhe die
> Wahrscheinlichkeit.
>
> 6 richtige endziffern:100.000,000 euro
> 5'':6.666,00 euro
> 4'':666,00 euro
> 3'':66,00 euro
> 2'':2,50 euro
> hallo erstmal :) also ich wollte nur mal eben kurz
> nachfragen ob ich die obrige aufgabe richtig gelöst habe.
> zb bei zwei richtigen endziffern müsste man doch dann die
> ziffern von 00 bis 99 betrachten und das wären ja insgesamt
> 100 und da es ja zwei richtige sein sollen P(zwei richtige
> endziffern)= 2/100 für drei dann 3/1000 und so weiter bis
> 6/1000000. ist das so richtig oder hab ich nen denkfehler
> gemacht also mit sowas wie 5! oder so hatten wir jedenfalls
> noch nich, da ich im netz so eine lösung gesehen hab, die
> aber wohl nich richtig ist oder?
Also: Erst mal musst Du schauen, wie viele Zahlen man insgesamt bilden kann.
Es sind [mm] 10^{6}, [/mm] also 1 Million.
Nur 1 (eine) davon ist ganz und gar richtig,
sodass die Wahrscheinlichkeit für 6 Richtige = [mm] \bruch{1}{1000.000} [/mm] = 0,000001 ist.
Bei 5 Richtigen hast Du 5 richtige Ziffern und die vorderste Ziffer falsch.
Für Letzteres gibt es 9 Möglichkeiten;
daher ist die gesuchte Wahrscheinlichkeit [mm] \bruch{9}{1000.000} [/mm] = 0,000009.
Bei 4 Richtigen hast Du 4 richtige Ziffern und die vordersten beiden Ziffern sind falsch.
Für Letzteres gibt es 9*9=81 Möglichkeiten;
daher ist die gesuchte Wahrscheinlichkeit [mm] \bruch{81}{1000.000} [/mm] = 0,000081.
usw.
Denk' mal drüber nach!
mfG!
Zwerglein
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 19:57 Mo 11.05.2009 | Autor: | Fawkes |
danke schön hab meinen denkfehler nachvollziehen können :)
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:29 Di 12.05.2009 | Autor: | Zwerglein |
Hi, Fawkes,
> Also: Erst mal musst Du schauen, wie viele Zahlen man
> insgesamt bilden kann.
> Es sind [mm]10^{6},[/mm] also 1 Million.
> Nur 1 (eine) davon ist ganz und gar richtig,
> sodass die Wahrscheinlichkeit für 6 Richtige =
> [mm]\bruch{1}{1000.000}[/mm] = 0,000001 ist.
> Bei 5 Richtigen hast Du 5 richtige Ziffern und die
> vorderste Ziffer falsch.
> Für Letzteres gibt es 9 Möglichkeiten;
> daher ist die gesuchte Wahrscheinlichkeit
> [mm]\bruch{9}{1000.000}[/mm] = 0,000009.
> Bei 4 Richtigen hast Du 4 richtige Ziffern und die
> vordersten beiden Ziffern sind falsch.
> Für Letzteres gibt es 9*9=81 Möglichkeiten;
> daher ist die gesuchte Wahrscheinlichkeit
> [mm]\bruch{81}{1000.000}[/mm] = 0,000081.
Ich merke grade, dass mir hier ein Denkfehler unterlaufen ist, denn wenn "nur" die letzten 4 Ziffern richtig sein sollen, muss die 5.-letzte (also die zweite von vorne) falsch sein, aber: die vorderste darf trotzdem wieder "richtig" sein. Daher gibt's nicht 9*9 = 81 sondern 9*10 = 90 Möglichkeiten für 4 richtige Endziffern.
mfG!
Zwerglein
|
|
|
|