matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitstetigkeit von Funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stetigkeit" - stetigkeit von Funktionen
stetigkeit von Funktionen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit von Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:02 Do 28.06.2007
Autor: Zerwas

Aufgabe
Zeigen sie die Stetigkeit der folgenden Funktionen:
(1) [mm] f:\IR_{\ge 0}\to\IR [/mm] : [mm] f(x)=x^z [/mm] für [mm] z\in\IZ [/mm]
(2) [mm] f:\IR\to\IR [/mm] : [mm] f(x)=e^x [/mm]

Eine Funktion f ist stetig wenn gilt: [mm] \forall\varepsilon>0\exists\delta>0, [/mm] so dass [mm] |x-x_0|<\delta\Rightarrow |f(x)-f(x_0)|<\varepsilon [/mm]

(1)
Fallunterscheidung:
1. Fall: (z<0)
Sei [mm] \delta=\varepsilon [/mm]
[mm] |f(x)-f(x_0)|=|x^z-x_0^z|<|x-x_0|<\delta=\varepsilon [/mm]

2. Fall: (z=0)
[mm] |f(x)-f(x_0)|=|x^0-x_0^0|=|1-1|=0<\varepsilon \forall\varepsilon>0 [/mm]

3. Fall: (z>0)
Wie wähle ich hier mein [mm] \delta? [/mm] ... Und wie löse ich auf
ich habe [mm] |f(x)-f(x_0)|=|x^z-x_0^z|
(2)
Wie mache ich das hier vom Prinzip her? ich habe hier kein [mm] \delta [/mm] was ich sofort sehe wie ermittle ich das? auch allgemein

Ich habe diese Frage auf keinem anderen Forum auf anderen Internetseiten gestellt.

Gruß Zerwas

        
Bezug
stetigkeit von Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:33 Do 28.06.2007
Autor: Somebody


> Zeigen sie die Stetigkeit der folgenden Funktionen:
>  (1) [mm]f:\IR_{\ge 0}\to\IR[/mm] : [mm]f(x)=x^z[/mm] für [mm]z\in\IZ[/mm]
>  (2) [mm]f:\IR\to\IR[/mm] : [mm]f(x)=e^x[/mm]
>  Eine Funktion f ist stetig wenn gilt:
> [mm]\forall\varepsilon>0\exists\delta>0,[/mm] so dass
> [mm]|x-x_0|<\delta\Rightarrow |f(x)-f(x_0)|<\varepsilon[/mm]
>  
> (1)
>  Fallunterscheidung:
>  1. Fall: (z<0)
>  Sei [mm]\delta=\varepsilon[/mm]
>  [mm]|f(x)-f(x_0)|=|x^z-x_0^z|<|x-x_0|<\delta=\varepsilon[/mm]

Na, na, mein Lieber: hier hast Du doch nur etwas hingeschrieben, das Du eigentlich genauer argumentieren solltest...

>  
> 2. Fall: (z=0)
>  [mm]|f(x)-f(x_0)|=|x^0-x_0^0|=|1-1|=0<\varepsilon \forall\varepsilon>0[/mm]
>  
> 3. Fall: (z>0)
>  Wie wähle ich hier mein [mm]\delta?[/mm] ... Und wie löse ich auf
>  ich habe [mm]|f(x)-f(x_0)|=|x^z-x_0^z|

Versuche mal [mm]x[/mm] als [mm]x_0+(x-x_0)[/mm] zu schreiben und dann mittels allgemeiner binomischer Formel auzumultiplizieren (aber so, dass der erwünschte Faktor [mm](x-x_0)[/mm] durchgehend erhalten bleibt):
[mm]\big|\big(x_0+(x-x_0)\big)^z-x_0^z\big| = |(x_0^z+z\cdot x_0^{z-1}(x-x_0)^1+\cdots+(x-x_0)^z)-x_0^z| = |z\cdot x_0^{z-1}+(x-x_0)\cdot (\ldots))|\cdot |x-x_0|[/mm]
Nun müsstest Du nur noch den ersten Faktor nach dem letzten Gleichheitszeichen vom Betrag her durch eine Konstante beschränken können (allerdings möglichst ohne dabei bereits vorauszusetzen, was Du erst beweisen willst: nämlich die Stetigkeit von [mm]x^z[/mm], für [mm]z\in \IZ[/mm]): dann wäre es ja ein leichtes, ein [mm]\delta > 0[/mm] anzugeben, so dass dieses letzte Produkt kleiner ist als ein vorgegebenes [mm]\varepsilon > 0[/mm].

>  
> (2)
>  Wie mache ich das hier vom Prinzip her? ich habe hier kein
> [mm]\delta[/mm] was ich sofort sehe wie ermittle ich das? auch
> allgemein
>  
> Ich habe diese Frage auf keinem anderen Forum auf anderen
> Internetseiten gestellt.
>  
> Gruß Zerwas


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]