matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitstetigkeit eines LimesFkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Stetigkeit" - stetigkeit eines LimesFkt
stetigkeit eines LimesFkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit eines LimesFkt: idee
Status: (Frage) beantwortet Status 
Datum: 15:48 So 04.01.2009
Autor: Mardoc

Aufgabe
Gegeben ist die auf ganz R definierte Funktion f(x) = [mm] \limes_{n\rightarrow\infty} \bruch{1}{1+x^{2n}}. [/mm] geben sie alle stellen an an denen f nicht stetig ist

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


ich habe bei dem teil das problem das ich nichtmal weiß wie ich die funktion richtig verstehen/ lesen soll geschweige denn wie ich zeigen soll das irgdnwo was unstetig ist

für mich geht das teil mit jedem x>=1  immer gegen 0 aber ob das so richtig ist ka

hoffe das mir wer weiter helfen kann

        
Bezug
stetigkeit eines LimesFkt: Antwort
Status: (Antwort) fertig Status 
Datum: 15:56 So 04.01.2009
Autor: XPatrickX

Hallo!

> Gegeben ist die auf ganz R definierte Funktion f(x) =
> [mm]\limes_{n\rightarrow\infty} \bruch{1}{1+x^{2n}}.[/mm] geben sie
> alle stellen an an denen f nicht stetig ist
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
>
> ich habe bei dem teil das problem das ich nichtmal weiß wie
> ich die funktion richtig verstehen/ lesen soll geschweige
> denn wie ich zeigen soll das irgdnwo was unstetig ist
>  
> für mich geht das teil mit jedem x>=1  immer gegen 0 aber
> ob das so richtig ist ka

Fast, die Funktion geht für alle [mm] x\red{>}1 [/mm] gegen 0.
Was ist bei x=1? Ist die Funktion damit an der Stelle 1 stetig?
Nun musst du noch gucken was in dem offenen Intervall (-1,1) passiert.

Die Stelle -1 solltest du wieder getrennt untersuchen. Und schließlich was passiert bei x<-1.

Ich denke damit findest du die beiden Unstetigkeitsstellen.

>  
> hoffe das mir wer weiter helfen kann

Gruß Patrick

Bezug
                
Bezug
stetigkeit eines LimesFkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 So 04.01.2009
Autor: Mardoc

arg da hätte ich auch selber drauf kommen können

danke erstmal für deine schnelle antwort

wenn ich richtig gerechnet habe ist das teil bei 1 und -1 unstetig richtig?

Bezug
                        
Bezug
stetigkeit eines LimesFkt: Stimmt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 So 04.01.2009
Autor: XPatrickX

Genau, denn dort springt die Funktion von 0 auf 1/2 und dann auf 1 (bzw. umgekehrt).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]