matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisstetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionalanalysis" - stetigkeit
stetigkeit < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:47 Mi 17.05.2006
Autor: Phys

in unserem Aufgabenblatt ist folgende (meiner meinung nach:unlösbare Aufgabe;-) für die ich nichtmal nen Lösungsansatz habe:
Sei I=[0,1] und V= [mm] C^{1}(I) [/mm] versehen mit der Norm:
[mm] \parallel [/mm] f [mm] \parallel [/mm] = [mm] \max_{x\in I}\wurzel{ |f(x) |^2+|f'(x)|^2} [/mm]
und [mm] V_{0} [/mm] der Raum [mm] C^1(I) [/mm] versehen mit der Norm [mm] \parallel [/mm] f [mm] \parallel_{ \infty}= \max_{x\in I}|f(x)|.Sei [/mm] W=C(I) mit der Norm [mm] \parallel [/mm] f [mm] \parallel_{ \infty}= \max_{x\in I}|f(x)| [/mm] überprüfen sie die Stetigkeit von [mm] D_{1}:V \to [/mm] W,f [mm] \to [/mm] f'und [mm] D_{2}:V_{0} \to [/mm] W,f [mm] \to [/mm] f' und dann soll noch gegebenenfalls  [mm] \parallel D_{1} \parallel [/mm] bestimmt werden. Ich wäre für jede Hilfe sehr dankbar, da ich momentan zeimlich auf dem schlauch steh(also keinen Ansatz habe)

        
Bezug
stetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:54 Do 18.05.2006
Autor: MatthiasKr

Hallo phys,

erstmal: ruhig blut! denn von unlösbarkeit ist diese aufgabe meilenweit entfernt.... ;-)

also, du hast hier verschiedene funktionenräume mit verschiedenen normen gegeben und sollst prüfen, ob der ableitungsoperator jeweils stetig ist.

Zunächst mal ist der Abl.operator ja linear. Wie kann man also die stetigkeit charakterisieren? hat man einen linearen Op. [mm] $D:X\to [/mm] Y$ dann ist dieser gd. stetig, wenn es eine konstante $C$ gibt mit [mm] $\|Dx\|_Y\le C\cdot \|x\|_X,\forall x\in [/mm] X$. Die kleinste solche Konstante $C$ nennt man dann die Operatornorm [mm] $\|D\|$ [/mm] des Operators.

Nehmen wir also mal [mm] $D_1:V\to [/mm] W, [mm] f\mapsto [/mm] f'$. Du musst prüfen, ob du die  [mm] $C^0$-Norm, [/mm] also die maximum-norm, der ableitung durch die [mm] $C^1$-Norm [/mm] der funktion abschätzen kannst. es gilt doch aber

[mm] $\|f'\|_\infty=\max_{x \in I}|f'(x)|\le \max_{x \in I}\wurzel{ |f(x) |^2+|f'(x)|^2}=\|f\|_V$ [/mm]

[mm] $D_1$ [/mm] ist also stetig! Und [mm] $\|D_1\|$ [/mm] haben wir nebenbei auch schon bestimmt, siehst du das? [mm] $D_2$ [/mm] kannst du ja jetzt selbst mal untersuchen.

Gruß
Matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]