matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSchul-Analysisstetig differenzierbar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Schul-Analysis" - stetig differenzierbar
stetig differenzierbar < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stetig differenzierbar: Tipp
Status: (Frage) beantwortet Status 
Datum: 10:29 Mo 15.05.2006
Autor: Jomira

Hallo,

ich soll zeigen, dass eine Funktion stetig differenzierbar ist.
Reicht es zu zeigen, dass die Funktion stetig und total differenzierbar ist?

Gruß Jomira


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
stetig differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Di 16.05.2006
Autor: chrisno

stetig ist die Funktion ja hoffentlich, sonst ist sie an den Stellen nicht differenzierbar.
Wenn die aprtiellen Ableitungen alle steig sind, dann ist sie stetig differenzierbar. Dann ist sie auch total differenzierbar.
Aus der totalen differenzierbarkeit folgt noch nicht die stetige differenzierbarkeit, so ich mich recht erinnere.

Wie üblich hilft es sehr, wenn ein Beispiel, also die konkrete Funktion gegeben wäre. Oder aber der Hinweis, dass es sich um einen allgemeinen Beweis handelt.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]