matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisstationäre Punkte
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - stationäre Punkte
stationäre Punkte < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

stationäre Punkte: Probleme mit der e-Funktion
Status: (Frage) beantwortet Status 
Datum: 15:27 So 19.06.2005
Autor: Samoth

Hallo Matheraum,

Ich komme bei einer Teilaufgabe nicht weiter, vielleicht könnt ihr mir einen Tipp geben.

Bestimme alle stationären Punkte der Funktion:

[mm] f(x,y) = e^{xy} + x^{2} + \lambda y^{2} \quad \lambda > 0. [/mm]

Ich habe erstmal grad(f) bestimmt.

Nun sucht man die Stellen an denen grad(f) = 0 ist.

Also erhalte ich das Gleichungssystem [mm] f_{x} = 2x + e^{xy}y = 0 [/mm] und [mm] f_{y} = 2\lambda y + e^{xy}x = 0 [/mm]

Es gelingt mir nun aber nicht, dieses Gleichungssystem zu lösen. Kann mir vielleicht jemand einen Anstoss geben? Ich würde mich sehr freuen.

Viele Grüße,

Samoth

        
Bezug
stationäre Punkte: Hinweis
Status: (Antwort) fertig Status 
Datum: 20:45 So 19.06.2005
Autor: MathePower

Hallo Samoth,

> [mm]f(x,y) = e^{xy} + x^{2} + \lambda y^{2} \quad \lambda > 0.[/mm]
>  
> Ich habe erstmal grad(f) bestimmt.
>  
> Nun sucht man die Stellen an denen grad(f) = 0 ist.
>  
> Also erhalte ich das Gleichungssystem [mm]f_{x} = 2x + e^{xy}y = 0[/mm]
> und [mm]f_{y} = 2\lambda y + e^{xy}x = 0[/mm]

Ersetze doch einfach ein [mm]e^{xy}[/mm] und setze es in die übriggebliebene Gleichung ein.

Aus [mm]f_{y}\;=\;0[/mm] folgt:

[mm] \begin{gathered} f_y \; = \;0 \hfill \\ \Rightarrow e^{xy} \; = \; - \;2\;\lambda \;\frac{y} {x} \hfill \\ f_x \; = \;0 \hfill \\ \Leftrightarrow \;2\;x\; + \;e^{xy} \;y\; = \;0 \hfill \\ \Leftrightarrow \;2\;x\; - \;2\;\lambda \;\frac{{y^2 }} {x}\; = \;0 \hfill \\ \end{gathered} [/mm]

Gruß
MathePower



Bezug
                
Bezug
stationäre Punkte: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:38 So 19.06.2005
Autor: Samoth

Vielen Dank, für deine schnelle Antwort.
Ich hatte wohl ein Brett vor dem Kopf.

Viele Grüße,

Samoth

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]