skalarprodukt total diffbar? < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 23:22 So 06.09.2009 | Autor: | xyzxy |
hallo,
ich habe in einem prüfungsprotokoll die frage gelesen ob <x,x> total differenzierbar ist. Man soll es einmal über den Gradient und dann noch über die Definition der totalen Differenzierbarkeit begründen. Leider weiß ich nicht wie ich da den Gradient ausrechne, und mit der definiton von totaler differenzierbarkeit kann ich auch nicht viel anfangen..
wär super wenn wir jemand helfen könnte
ich habe diese frage in keinem forum auf anderen internetseiten gestellt
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 02:47 Mo 07.09.2009 | Autor: | felixf |
Hallo!
> ich habe in einem prüfungsprotokoll die frage gelesen ob
> <x,x> total differenzierbar ist. Man soll es einmal über
> den Gradient und dann noch über die Definition der totalen
> Differenzierbarkeit begründen. Leider weiß ich nicht wie
> ich da den Gradient ausrechne, und mit der definiton von
> totaler differenzierbarkeit kann ich auch nicht viel
> anfangen..
Nun, du hast die Funktion $f : [mm] \IR^n \to \IR$, [/mm] $x = [mm] (x_1, \dots, x_n) \mapsto \langle [/mm] x, x [mm] \rangle [/mm] = [mm] \sum_{i=1}^n x_i^2$. [/mm] Da kannst du ganz normal den Gradienten ausrechnen. Du kannst uebrigens $(grad f(x)) [mm] \cdot [/mm] h$ sehr schoen ueber das Skalarprodukt darstellen, ueberleg dir mal wie das aussieht bevor du weitermachst.
Zur totalen Differenzierbarkeit schau dir $f(x + h) - f(x)$ an: wegen der Bilinearitaet und Symmetrie des Skalarproduktes ist $f(x + h) = f(x) + f(h) + 2 [mm] \langle [/mm] x, h [mm] \rangle$, [/mm] also $f(x + h) - f(x) = f(h) + 2 [mm] \langle [/mm] x, h [mm] \rangle$.
[/mm]
Weiterhin gilt [mm] $\| [/mm] h [mm] \| [/mm] = [mm] \sqrt{\langle h, h \rangle} [/mm] = [mm] \sqrt{f(h)}$.
[/mm]
Jetzt brauchst du den Gradienten $grad f(x)$, um $f(x + h) - f(x) - (grad f(x)) h$ zu berechnen, und du wirst sehen dass da etwas sehr schoenes rauskommt, insbesondere wenn du den Betrag nimmst und durch [mm] $\| [/mm] h [mm] \|$ [/mm] teilst.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:30 Mo 07.09.2009 | Autor: | xyzxy |
Vielen Dank schonmal für die Hilfe, ich hätte aber noch Fragen dazu.
Den Gradient konnte ich jetzt ausrechen: grad(f(x))=(2xindex1,....2xindexn) und das ganze transformiert.
grad(f(x))h mit dem Skalarprodukt: <2x,h>= 2<x,h>
Da alle partiellen Ableitungen existieren und stetig sind, ist f total differenzierbar. Stimmt das alles so??
Wenn ich f(x-h)-f(x)-grad(f(x))h berechne erhalte ich: f(x)+f(h)+2<x,h>-f(x)-2<x,h> =f(h) Wenn ich davon den Betrag nehme und durch Norm von h teile erhalte ich Norm von h.
Aber was sagt mir dass denn jetzt, falls es denn stimmt?
Unsere Definiton von total differenzierbar war: f:D->R hoch n ist an der Stelle a aus D (offene Teilmenge des R hoch n) total diffbar wenn es eine lineare Abb. L von R hoch n nach R hoch m gibt, sodass gilt: lim x-->a ((f(x)-f(a)-L(x-a))/(Norm(x-a)))=0
Wie hängt das mit dem was du geschrieben hast zusammen?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:33 Mo 07.09.2009 | Autor: | felixf |
Hallo!
> Den Gradient konnte ich jetzt ausrechen:
> grad(f(x))=(2xindex1,....2xindexn) und das ganze
> transformiert.
Benutz doch den Formeleditor, dann sieht das viel besser aus: $grad(f(x)) = (2 [mm] x_1, \dots, [/mm] 2 [mm] x_n)$.
[/mm]
> grad(f(x))h mit dem Skalarprodukt: <2x,h>= 2<x,h>
Genau.
> Da alle partiellen Ableitungen existieren und stetig sind,
> ist f total differenzierbar. Stimmt das alles so??
Ja, das stimmt.
> Wenn ich f(x-h)-f(x)-grad(f(x))h berechne erhalte ich:
> f(x)+f(h)+2<x,h>-f(x)-2<x,h> =f(h) Wenn ich davon den
> Betrag nehme und durch Norm von h teile erhalte ich Norm
> von h.
Ja.
> Aber was sagt mir dass denn jetzt, falls es denn stimmt?
> Unsere Definiton von total differenzierbar war: f:D->R
> hoch n ist an der Stelle a aus D (offene Teilmenge des R
> hoch n) total diffbar wenn es eine lineare Abb. L von R
> hoch n nach R hoch m gibt, sodass gilt: lim x-->a
> ((f(x)-f(a)-L(x-a))/(Norm(x-a)))=0
> Wie hängt das mit dem was du geschrieben hast zusammen?
Nun, aequivalent dazu ist [mm] $\lim_{h\to0} \frac{f(a + h) - f(a) - L(h)}{\|h\|} [/mm] = 0$, wie du einfach mit der Substitution $h = x - a$ sehen kannst.
Du kannst es aber auch mit deiner Definition nachrechnen: $f(x) - f(a) - 2 [mm] \langle [/mm] a, x - a [mm] \rangle [/mm] = f(x - a)$ und [mm] $\|x [/mm] - [mm] a\| [/mm] = [mm] \sqrt{f(x - a)}$, [/mm] womit [mm] $\frac{f(x) - f(a) - L(x - a)}{\| x - a \|} [/mm] = [mm] \| [/mm] x - a [mm] \|$ [/mm] ist. Und fuer $x [mm] \to [/mm] a$ geht das gegen 0.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 00:08 Di 08.09.2009 | Autor: | xyzxy |
vielen dank, jetzt hab ich es verstanden! :)
|
|
|
|