sin(1) < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:59 Sa 06.05.2006 | Autor: | Janyary |
Aufgabe | Berechnen Sie den Wert sin(1) mittels Taylor-Entwicklung von f(x)=sin(x) um die Entwicklungstelle [mm] x_{0}=\bruch{\pi}{3}. [/mm] wie viele Glieder muessen beruecksichtigt werden, um eine Genauigkeit von 5 Dezimalstellen zu erzielen?
(Hinweis: Es soll: [mm] |R_{n+1}(1)|\le 0.5*10^{-5} [/mm] gelten.) |
guten morgen ihr lieben :)
Bei der aufgabe grueble ich schon ein weilchen und weiss einfach nicht so recht wie ich anfangen soll.
hab zuerst mal versuch das taylorpolynom aufzustellen. das muesste so aussehen..
[mm] T_{n}(x)=sin(\bruch{\pi}{3})+cos(\bruch{\pi}{3})*(x-\bruch{\pi}{3})-\bruch{sin(\bruch{\pi}{3})}{2!}*(x-\bruch{\pi}{3})^{2}-\bruch{cos(\bruch{\pi}{3})}{3!}*(x-\bruch{\pi}{3})^{3}+\bruch{sin(\bruch{\pi}{3})}{4!}*(x-\bruch{\pi}{3})^{4}+...
[/mm]
ich hab es leider nicht geschafft das auf n fortzusetzen, in der formelsammlung steht ja die Potenzreihe fuer sin(x)= [mm] \summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}*x^{2n+1}
[/mm]
das kann man bestimmt irgendwie verwenden, vorallem auch fuer die Restglieddarstellung. aber leider weiss ich nicht wie.
waere echt toll, wenn mir jemand ein bisschen auf die Sprunge helfen koennte.
LG Jany :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:23 Sa 06.05.2006 | Autor: | felixf |
Hallo Jany!
> Berechnen Sie den Wert sin(1) mittels Taylor-Entwicklung
> von f(x)=sin(x) um die Entwicklungstelle
> [mm]x_{0}=\bruch{\pi}{3}.[/mm] wie viele Glieder muessen
> beruecksichtigt werden, um eine Genauigkeit von 5
> Dezimalstellen zu erzielen?
> (Hinweis: Es soll: [mm]|R_{n+1}(1)|\le 0.5*10^{-5}[/mm] gelten.)
> guten morgen ihr lieben :)
>
> Bei der aufgabe grueble ich schon ein weilchen und weiss
> einfach nicht so recht wie ich anfangen soll.
>
> hab zuerst mal versuch das taylorpolynom aufzustellen. das
> muesste so aussehen..
>
> [mm]T_{n}(x)=sin(\bruch{\pi}{3})+cos(\bruch{\pi}{3})*(x-\bruch{\pi}{3})-\bruch{sin(\bruch{\pi}{3})}{2!}*(x-\bruch{\pi}{3})^{2}-\bruch{cos(\bruch{\pi}{3})}{3!}*(x-\bruch{\pi}{3})^{3}+\bruch{sin(\bruch{\pi}{3})}{4!}*(x-\bruch{\pi}{3})^{4}+...[/mm]
Rechne doch mal [mm] $\sin \frac{\pi}{3}$ [/mm] und [mm] $\cos \frac{\pi}{3}$ [/mm] aus (das geht exakt!).
> ich hab es leider nicht geschafft das auf n fortzusetzen,
Schau dir doch mal das allgemeine Taylor-Polynom an: [mm] $T_n(x) [/mm] = [mm] \sum_{k=0}^n \frac{f^{(k)}(1)}{k!} [/mm] (x - [mm] 1)^k$. [/mm] Du musst also nur eine allgemeine Formel fuer [mm] $\sin^{(k)} [/mm] 1$ angeben!
Was du auf jeden Fall nutzen kannst: Die $k$-te Ableitung ist ja vom Betrag her immer gleich [mm] $\sin$ [/mm] oder [mm] $\cos$. [/mm] Es gilt also auf jeden Fall: [mm] $|\sin^{(k)} [/mm] y| [mm] \le [/mm] 1$ fuer alle $y [mm] \in \IR$ [/mm] und alle $k [mm] \ge [/mm] 0$. Benutz das jetzt mal mit der Formel fuers Restglied...
> in der formelsammlung steht ja die Potenzreihe fuer sin(x)=
> [mm]\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}*x^{2n+1}[/mm]
> das kann man bestimmt irgendwie verwenden, vorallem auch
> fuer die Restglieddarstellung. aber leider weiss ich nicht
> wie.
Nee, das bringt dir hier nicht viel...
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 12:07 Sa 06.05.2006 | Autor: | Janyary |
hi felix,
danke schonmal fuer deine hilfe, leider komme ich immer noch nicht so wirklich weiter.
also [mm] sin(\bruch{\pi}{3})=\bruch{\wurzel{3}}{2} [/mm] und [mm] cos(\bruch{\pi}{3})=\bruch{1}{2}
[/mm]
>
> Schau dir doch mal das allgemeine Taylor-Polynom an: [mm]T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(1)}{k!} (x - 1)^k[/mm].
> Du musst also nur eine allgemeine Formel fuer [mm]\sin^{(k)} 1[/mm]
> angeben!
Wieso nimmst du hier eigentlich [mm] f^{k}(1)? [/mm] meine Entwicklungsstelle ist doch [mm] \bruch{\pi}{3}.
[/mm]
tut mir leid aber irgendwie steh ich grad aufm schlauch...
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:51 Sa 06.05.2006 | Autor: | felixf |
Hallo Jany!
> danke schonmal fuer deine hilfe, leider komme ich immer
> noch nicht so wirklich weiter.
>
> also [mm]sin(\bruch{\pi}{3})=\bruch{\wurzel{3}}{2}[/mm] und
> [mm]cos(\bruch{\pi}{3})=\bruch{1}{2}[/mm]
>
>
> > Schau dir doch mal das allgemeine Taylor-Polynom an: [mm]T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(1)}{k!} (x - 1)^k[/mm].
> > Du musst also nur eine allgemeine Formel fuer [mm]\sin^{(k)} 1[/mm]
> > angeben!
>
> Wieso nimmst du hier eigentlich [mm]f^{k}(1)?[/mm] meine
> Entwicklungsstelle ist doch [mm]\bruch{\pi}{3}.[/mm]
Oooops, sorry, ich meinte auch [mm] $\pi/3$... [/mm] Bin da leicht durcheinandergekommen :-/
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:05 Sa 06.05.2006 | Autor: | Janyary |
hi felix,
also ich schaffe es irgendwie nicht den sin und cos unter einen hut zu bekommen, hab mal je eine allgemeine formel aufgestellt fuer die Taylorglieder..
also [mm] sin(\bruch{\pi}{3})= \bruch{\wurzel{3}}{2}\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n)!}*(x-\bruch{\pi}{3})^{2n}
[/mm]
und [mm] cos(\bruch{\pi}{3})=\bruch{1}{2} \summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}*(x-\bruch{\pi}{3})^{2n+1}
[/mm]
ich dank dir schonmal fuer deine geduld mit mir..
LG Jany :)
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:36 Sa 06.05.2006 | Autor: | felixf |
Sali Jany!
> also ich schaffe es irgendwie nicht den sin und cos unter
> einen hut zu bekommen, hab mal je eine allgemeine formel
> aufgestellt fuer die Taylorglieder..
>
> also [mm]sin(\bruch{\pi}{3})= \bruch{\wurzel{3}}{2}\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n)!}*(x-\bruch{\pi}{3})^{2n}[/mm]
>
> und [mm]cos(\bruch{\pi}{3})=\bruch{1}{2} \summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}*(x-\bruch{\pi}{3})^{2n+1}[/mm]
Also [mm] $\sin \frac{\pi}{3}$ [/mm] und [mm] $\cos \frac{\pi}{3}$ [/mm] hast du doch schon ausgerechnet, dafuer brauchst du keine Taylorreihe aufzustellen. (Ausserdem kommen in deinen Reihen noch $x$e vor, ganz im Gegensatz zu der linken Seite der Gleichungen!)
Du sollst das Taylorpolynom von [mm] $\sin$ [/mm] an der Stelle [mm] $\frac{\pi}{3}$ [/mm] ausrechnen. Und dafuer brauchst du die Werte [mm] $\sin \frac{\pi}{3}$ [/mm] und [mm] $\cos \frac{\pi}{3}$ [/mm] (siehe dein urspruengliches Posting).
Das brauchst du alles nur um das $n$-te Taylorpolynom angeben zu koennen. Dann hast du [mm] $\sin [/mm] x = [mm] T_n(x) [/mm] + [mm] R_n(x)$, [/mm] und du musst [mm] $|R_n(1)|$ [/mm] so abschaetzen, dass du einen Wert fuer $n$ finden kannst, ab dem [mm] $|R_n(1)| [/mm] <$ der gewuenschten Schranke ist. Dann kannst du in [mm] $T_n(x)$ [/mm] noch $x = 1$ einsetzen und fertig bist du mit der Aufgabe.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 14:01 Sa 06.05.2006 | Autor: | Janyary |
> > also [mm]sin(\bruch{\pi}{3})= \bruch{\wurzel{3}}{2}\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n)!}*(x-\bruch{\pi}{3})^{2n}[/mm]
>
> >
> > und [mm]cos(\bruch{\pi}{3})=\bruch{1}{2} \summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}*(x-\bruch{\pi}{3})^{2n+1}[/mm]
>
> Also [mm]\sin \frac{\pi}{3}[/mm] und [mm]\cos \frac{\pi}{3}[/mm] hast du doch
> schon ausgerechnet, dafuer brauchst du keine Taylorreihe
> aufzustellen. (Ausserdem kommen in deinen Reihen noch [mm]x[/mm]e
> vor, ganz im Gegensatz zu der linken Seite der
> Gleichungen!)
hm, so meinte ich das auch nicht, sondern eher in der art, dass
[mm] T_{n}(x)=\bruch{\wurzel{3}}{2}\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n)!}*(x-\bruch{\pi}{3})^{2n}+\bruch{1}{2} \summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}*(x-\bruch{\pi}{3})^{2n+1}
[/mm]
> Du sollst das Taylorpolynom von [mm]\sin[/mm] an der Stelle
> [mm]\frac{\pi}{3}[/mm] ausrechnen. Und dafuer brauchst du die Werte
> [mm]\sin \frac{\pi}{3}[/mm] und [mm]\cos \frac{\pi}{3}[/mm]
genau das gelingt mir ja nicht. tut mir leid, wenn ich mich grad total bloed anstelle, aber ich sehe absolut nicht, wie ich das allgemein n-te Glied aufschreiben soll. (deswegen hatte ich das ja oben auch unterteilt, aber das mir das nicht wirklich weiter hilft, da hast schon recht)
ich denke das n-te glied muesste in etwa so aussehen [mm] \bruch{}{2*n!}*(x-\bruch{\pi}{3})^{n} [/mm] aber ich weiss nicht was im zaehler stehen muss.
irgendwie seh ich wohl grad den wald vor lauter baeumen nicht..
LG Jany
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:44 Sa 06.05.2006 | Autor: | felixf |
Hallo Jany!
> > Also [mm]\sin \frac{\pi}{3}[/mm] und [mm]\cos \frac{\pi}{3}[/mm] hast du doch
> > schon ausgerechnet, dafuer brauchst du keine Taylorreihe
> > aufzustellen. (Ausserdem kommen in deinen Reihen noch [mm]x[/mm]e
> > vor, ganz im Gegensatz zu der linken Seite der
> > Gleichungen!)
>
> hm, so meinte ich das auch nicht, sondern eher in der art,
> dass
>
> [mm]T_{n}(x)=\bruch{\wurzel{3}}{2}\summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n)!}*(x-\bruch{\pi}{3})^{2n}+\bruch{1}{2} \summe_{n=0}^{\infty}\bruch{(-1)^{n}}{(2n+1)!}*(x-\bruch{\pi}{3})^{2n+1}[/mm]
Das ist kein Polynom vom Grad $n$, sondern eine Potenzreihe!
> > Du sollst das Taylorpolynom von [mm]\sin[/mm] an der Stelle
> > [mm]\frac{\pi}{3}[/mm] ausrechnen. Und dafuer brauchst du die Werte
> > [mm]\sin \frac{\pi}{3}[/mm] und [mm]\cos \frac{\pi}{3}[/mm]
>
> genau das gelingt mir ja nicht. tut mir leid, wenn ich mich
> grad total bloed anstelle, aber ich sehe absolut nicht, wie
> ich das allgemein n-te Glied aufschreiben soll. (deswegen
> hatte ich das ja oben auch unterteilt, aber das mir das
> nicht wirklich weiter hilft, da hast schon recht)
>
> ich denke das n-te glied muesste in etwa so aussehen
> [mm]\bruch{}{2*n!}*(x-\bruch{\pi}{3})^{n}[/mm] aber ich weiss nicht
> was im zaehler stehen muss.
Also: Es ist
- [mm] $\sin^{(0)}(\frac{\pi}{3}) [/mm] = [mm] \sin \frac{\pi}{3} [/mm] = [mm] \frac{\sqrt{3}}{2}$,
[/mm]
- [mm] $\sin^{(1)}(\frac{\pi}{3}) [/mm] = [mm] \cos \frac{\pi}{3} [/mm] = [mm] \frac{1}{2}$,
[/mm]
- [mm] $\sin^{(2)}(\frac{\pi}{3}) [/mm] = [mm] -\sin \frac{\pi}{3} [/mm] = [mm] -\frac{\sqrt{3}}{2}$,
[/mm]
- [mm] $\sin^{(3)}(\frac{\pi}{3}) [/mm] = [mm] -\cos \frac{\pi}{3} [/mm] = [mm] -\frac{1}{2}$,
[/mm]
- und [mm] $\sin^{(n+4)}(\frac{\pi}{3}) [/mm] = [mm] \sin^{(n)}(\frac{\pi}{3})$ [/mm] fuer alle $n [mm] \ge [/mm] 0$.
Sei [mm] $a_n [/mm] := [mm] \sin^{(n)}(\frac{\pi}{3}) [/mm] = [mm] \frac{(-1)^{\lfloor \frac{n}{2} \rfloor}}{2} \begin{cases} \sqrt{3}, & n \equiv 0 \pmod{2} \\ 1, & n \equiv 1 \pmod{2} \end{cases}$. [/mm] Dann gilt [mm] $T_n(x) [/mm] = [mm] \sum_{k=0}^n \frac{\sin^{(k)}(\frac{\pi}{3})}{k!} \left(x - \frac{\pi}{3}\right)^k [/mm] = [mm] \sum_{k=0}^n \frac{a_k}{k!} \left(x - \frac{\pi}{3}\right)^k$. [/mm] Das ist das allgemeine Taylor-Polynom.
Und das Restglied [mm] $R_n(x)$ [/mm] ist durch [mm] $\frac{a_{n+1}}{(n+1)!} \sin^{(n+1)}(\theta) \left(x - \frac{\pi}{3}\right)^{n+1}$ [/mm] fuer ein [mm] $\theta$ [/mm] zwischen $x$ und $0$ gegeben. Also gilt [mm] $|R_n(1)| [/mm] = [mm] |\sin^{(n+1)}(\theta)| \frac{\left(\frac{\pi}{3} - 1\right)^{n+1}}{(n+1)!} \le \frac{\left(\frac{\pi}{3} - 1\right)^{n+1}}{(n+1)!}$, [/mm] da [mm] $|\sin [/mm] y|, [mm] |\cos [/mm] y| [mm] \le [/mm] 1$ fuer alle $y [mm] \in \IR$ [/mm] gilt.
Kommst du jetzt weiter?
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:46 So 07.05.2006 | Autor: | Janyary |
hallo felix,
ein riesig grosses dankeschoen fuer deine ausfuehrliche erklaerung. ich hab mir das alles heut morgen noch mal in ruhe durchgeschaut und dann ist auch endlich der groschen mit der abschaetzung des betrages kleiner 1 gefallen.
LG Jany
|
|
|
|