matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieschwieriges Integral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Integrationstheorie" - schwieriges Integral
schwieriges Integral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schwieriges Integral: Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 19:09 Sa 15.05.2010
Autor: hawkingfan

Aufgabe
Berechne das Integral
[mm] \integral_{1}^{\infty}{\bruch{1}{(e^{x}-1)x^{2}} dx} [/mm]

Das Integral habe ich eigentlich eher aus Spaß und als Selbsttest versucht zu lösen.
Alternativ kann man natürlich die Stammfunktion bzw. das Integral
[mm] \integral{\bruch{1}{(e^{x}-1)x^{2}} dx} [/mm]
berechnen.
Was ich bisher versucht habe:
partielle Integration: Wenn man den Integrand als Produkt [mm] \bruch{1}{e^{x}-1}*\bruch{1}{x^{2}}auffast [/mm] kann man die partielle Integration anwenden. Aber ich schätze das bringt nicht so viel, da nur der zweite Bruch durch Integration vereinfacht wir, aber der erste Bruch dadurch kompliziert wird.
Substitution: Hier habe ich in ein paar Formelsammlungen und Mathebüchern nachgeguckt, ob es sich hier um eine Standardsubstitution handelt, hab aber nichts gefunden. Dann habe ich selbst die ein- oder andere Substitution ausprobiert, bin aber zu keinem Ergebnis gekommen.

Liegt das jetzt daran, dass meine Integrationsfähigkeiten extrem eigerostet sind oder ist es wirklich schwierig dieses Integral zu bestimmen?
Im ersten Fall wäre es nett, wenn mir jemand einen Ansatz sagen könnte.

freue mich schon auf Vorschläge,
mit freundlichen Grüßen hawkingfan

        
Bezug
schwieriges Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:32 Sa 15.05.2010
Autor: Gonozal_IX

Also da nichtmal Mathematica das Ding lösen kann und für das uneigentliche Integral einen numerischen Näherungswert angibt, behaupte ich mal, das geht so nicht.
Wie kommst du denn auf dieses Integral?

MFG,
Gono.

Bezug
                
Bezug
schwieriges Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:44 Sa 15.05.2010
Autor: hawkingfan

Eigentlich habe ich es mir ausgedacht, wenigstens so halb. Ich habe die Aufgabe (oder eine ähnliche) im Internet gesehen und hab dann gesehen, dass ich die Lösung bzw. den Lösungsweg nicht auf den ersten Blick wusste. Da ich nach was anderem gesucht hatte habe ich dann nicht länger draufgeguckt. Dann habe ich mich ein paar Tage später am Wochenende, als ich mal Zeit hatte versucht zu erinnern und glaubte, dass dies das Integral war. Wahrscheinlich habe ich mich gerirrt, aber trotzdem würde mich jetzt interessieren, wie man das Integral ausrechnet, weil dieses Integral irgendwie so einfach aussieht.

Ganz nebenbei:
Welchen Näherungswert hat Mathematica denn ausgespuckt?

mit freundlichen Grüßen
hawkingfan

Bezug
                        
Bezug
schwieriges Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:50 Sa 15.05.2010
Autor: leduart

Hallo
Man kann sich leicht und schnell ne unmenge von Integralen "ausdenken" die man nicht mit einfachen sog. lementaren funktionen lösen kann. viele davon enthalten [mm] e^x [/mm] oder [mm] e^{f(x)} [/mm]
Es ist immer wieder erstaunlich, warum so viele leute glauben, wenn sie irgendwas hinschreiben hätte das ne "einfache" Lösung. Ich denk, das ist auch hier so.
gruss leuart

Bezug
                                
Bezug
schwieriges Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:54 Sa 15.05.2010
Autor: hawkingfan

Dass [mm] x*e^x [/mm] o.ä. immer Probleme beim Integrieren macht ist mir schon bekannt.
Es muss ja auch keine "einfache" Lösung sein, ´ne schwierige wär´mir auch recht.
gruß hawkingfan

Bezug
                                        
Bezug
schwieriges Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 19:57 Sa 15.05.2010
Autor: Steffi21

Hallo, hier kannst du doch ganz einfach partielle Integration machen, Steffi

Bezug
                                                
Bezug
schwieriges Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:01 Sa 15.05.2010
Autor: hawkingfan

Bringt das irgendetwas? Was ist im Integral u und was ist v´?
gruß hawkingfan

Bezug
                                                        
Bezug
schwieriges Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:09 Sa 15.05.2010
Autor: Gonozal_IX

u = x
v' = [mm] e^x [/mm]

Und schon ists Integral gelöst....

Bezug
                                                                
Bezug
schwieriges Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:24 Sa 15.05.2010
Autor: hawkingfan

Moment mal, dann [mm] (v´=e^x [/mm] und u=x) haben wir:
[mm] \integral{x*e^x}dx [/mm]
Oder was genau meinst du?

Bezug
                                                                        
Bezug
schwieriges Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:28 Sa 15.05.2010
Autor: Gonozal_IX


> Moment mal, dann [mm](v´=e^x[/mm] und u=x) haben wir:
>  [mm]\integral{x*e^x}dx[/mm]

Wieso haben wir?

Du meintest doch:

> Dass $ [mm] x\cdot{}e^x [/mm] $ o.ä. immer Probleme beim Integrieren macht ist mir schon bekannt.

Und nein, es macht keine Probleme, wenn du [mm]\integral{x*e^x}dx[/mm] berechnen willst, geht das mit partieller Integration, indem du u = x und v' = [mm] e^x [/mm] setzt.
Mach das mal und wende die Formel der partiellen Integration an.

MFG,
Gono.


Bezug
                                                                                
Bezug
schwieriges Integral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:09 Sa 15.05.2010
Autor: hawkingfan

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

ah ok, ich dachte du meintest das Integral
\integral{\bruch{1}{(e^x-1)*x^2}

Bezug
                
Bezug
schwieriges Integral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:51 Sa 15.05.2010
Autor: hawkingfan


> Also da nichtmal Mathematica das Ding lösen kann und für
> das uneigentliche Integral einen numerischen Näherungswert
> angibt, behaupte ich mal, das geht so nicht.

nichtmal Mathematica?
Ich kenns mich nicht so mit Mathematica auf (habs selber nie benutzt), weiß nur, dass der Wolfram Integrator, der ja wohl auf Mathematica basiert, die meisten Integrale, die ich ihm gebe ausrechnet (d.h.: bisher alle; mit diesem habe ich es bei dem Integrator noch nicht probiert, weil er keine Ansätze gibt sondern im Wesentlichen ein paar Zahlen ausspuckt – dieses Integral wollte ich, wenigstens zum Teil, selber knacken.
Meine Frage ist jetzt: Gibt es viele Integrale, die man als Mensch relativ schnell hinkriegt, ohne Gauß zu sein, die Mathematica nicht hinkriegt oder sind die eine totale Seltenheit?
Mit anderen Worten: Ist das Integral deshalb für mich unberechenbar oder kann es sein, dass man trotzdem irgendwie ans Ziel kommt?

Bezug
                        
Bezug
schwieriges Integral: Antwort
Status: (Antwort) fertig Status 
Datum: 20:13 Sa 15.05.2010
Autor: Gonozal_IX

Hiho,

>  Meine Frage ist jetzt: Gibt es viele Integrale, die man
> als Mensch relativ schnell hinkriegt, ohne Gauß zu sein,
> die Mathematica nicht hinkriegt oder sind die eine totale
> Seltenheit?

Öhm, ich würde sogar behaupten, du wirst keins finden.
Einzig wenn es Einschränkungen zum Integranten gibt, die du formal nicht dem Programm vermitteln kannst, die das Integral für den Menschen dann aber recht einfach machen, weil es sich bspw. gut abschätzen lässt.

>  Mit anderen Worten: Ist das Integral deshalb für mich
> unberechenbar oder kann es sein, dass man trotzdem
> irgendwie ans Ziel kommt?

Also rein theoretisch kann es ja sein, dass du einen Lösungsweg findest, den bisher niemand gefunden hat und der deswegen in keinem Programm implementiert ist.
Die Möglichkeit wollen wir nicht ausschließen und darum darfst du uns hier gern mit Ideen bombardieren, sofern du welche hast.

MFG,
Gono.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]