matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorie'schwacher' kleiner Fermat
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - 'schwacher' kleiner Fermat
'schwacher' kleiner Fermat < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

'schwacher' kleiner Fermat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:36 Mo 19.08.2013
Autor: wauwau

Aufgabe
Bestimme alle Zahlen n, für die für alle $a$ mit $(a,n)=1$
[mm] $a^{2(n-1)} \equiv [/mm] 1 [mm] \mod [/mm] n$ gilt



Leider stehe ich etwas auf der Leitung
Gibt es ausser den Carmichael Zahlen und Primzahlen sonst noch welche, die dieses schwächere Kriterium erfüllen?

        
Bezug
'schwacher' kleiner Fermat: Antwort
Status: (Antwort) fertig Status 
Datum: 10:03 Mo 19.08.2013
Autor: reverend

Hallo wauwau,

> Bestimme alle Zahlen n, für die für alle [mm]a[/mm] mit [mm](a,n)=1[/mm]
> [mm]a^{2(n-1)} \equiv 1 \mod n[/mm] gilt

>
>

> Leider stehe ich etwas auf der Leitung
> Gibt es ausser den Carmichael Zahlen und Primzahlen sonst
> noch welche, die dieses schwächere Kriterium erfüllen?

Ja. Wie wärs einfach mit n=15?

Grüße
reverend

Bezug
                
Bezug
'schwacher' kleiner Fermat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:59 Mo 19.08.2013
Autor: wauwau

Danke - aber das sind ja nicht alle (24,28,66,91,...)
also Primzahlen, Carmichael Zahlen und andere
Für Primzahlen und Carmichael Zahlen gibt es ja Korselts Kriterium.
Gibt es für die in diesem Fall gesuchten ebenfalls ein Kriterium?

Bezug
                        
Bezug
'schwacher' kleiner Fermat: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mo 19.08.2013
Autor: felixf

Moin!

> Danke - aber das sind ja nicht alle (24,28,66,91,...)
>  also Primzahlen, Carmichael Zahlen und andere
>  Für Primzahlen und Carmichael Zahlen gibt es ja Korselts
> Kriterium.
>  Gibt es für die in diesem Fall gesuchten ebenfalls ein
> Kriterium?

Ist $n$ eine Zahl mit [mm] $a^{2 (n-1)} [/mm] = 1$ fuer alle $a [mm] \in (\IZ/n\IZ)^\ast$, [/mm] so muss $n$ quadratfrei sein. Das zeigt man genauso wie bei Carmichael-Zahlen: ist $n = [mm] p^e \cdot [/mm] m$ mit $p [mm] \nmid [/mm] m$ und $e [mm] \ge [/mm] 2$, so kann man in [mm] $(\IZ/n\IZ)^\ast \cong (\IZ/p^e\IZ)^\ast \times (\IZ/m\IZ)^\ast$ [/mm] ein Element der Ordnung [mm] $p^{e - 1}$ [/mm] finden (Sylow-Saetze angewand auf [mm] $(\IZ/p^e\IZ)^\ast$). [/mm] Nun ist jedoch $n - 1$ teilerfremd zu $p$, womit dieses Element hoch $2 (n - 1)$ niemals gleich 1 sein kann.

Edit: Tippfehler korrigiert. Man sieht hier auch: ist $p = 2$, so ist $e = 2$ doch moeglich, jedoch nicht $e [mm] \ge [/mm] 3$. Ist $p > 2$, so muss $e = 1$ sein.

Also ist $n$ quadratfrei. Jetzt kann man wie bei Korselts Kriterium zeigen: eine quadratfreie Zahl $n$ erfuellt [mm] $\forall [/mm] a [mm] \in (\IZ/n\IZ)^\ast [/mm] : [mm] a^{2 (n-1)} [/mm] = 1$ genau dann, wenn $p [mm] \mid [/mm] n$ impliziert $(p - 1) [mm] \mid [/mm] 2 (n - 1)$. Das folgt daraus, dass es zu jedem Primteiler $p$ von $n$ ein Element der Ordnung $p - 1$ in [mm] $(\IZ/n\IZ)^\ast$ [/mm] gibt, und diese Elemente zusammen die Gruppe erzeugen.

Und im Gegensatz zu Carmichael-Zahlen kann man hieraus nicht folgern, dass $n$ ungerade sein muss -- siehe die Beispiele 24, 28 und 66. Dass es mindestens drei Primfaktoren geben muss wenn die Zahl nicht prim ist kann man moeglicherweise genauso - oder zumindest aehnlich - zeigen wie bei Carmichael-Zahlen, das hab ich jetzt nicht probiert.

LG Felix


Bezug
                                
Bezug
'schwacher' kleiner Fermat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:32 Di 20.08.2013
Autor: wauwau

Kann man wirklich auf quadratfrei schließen, denn 28 ist eine Lösung, ist aber nicht quatratfrei ?

Leider kann man in diesem Fall auch nicht auf mind. 3 Primfaktoren schließen,

denn, wenn $ p$ und $q=2p-1$ beides Primzahlen sind, dann erfüllt $n=pq$ das abgeänderte Korselt Kriterium  (also z.B. 15(3,5), 91(7,13))
und auch mit jeder Zahl n erfüllen natürlich auch die Zahlen $2^a3^bn$ diese Kriterium...

Bezug
                                        
Bezug
'schwacher' kleiner Fermat: Antwort
Status: (Antwort) fertig Status 
Datum: 14:09 Di 20.08.2013
Autor: felixf

Moin,

> Kann man wirklich auf quadratfrei schließen, denn 28 ist
> eine Lösung, ist aber nicht quatratfrei ?

da hast du Recht. Allerdings (siehe Edit): kein Primfaktor ausser 2 kann mehrfach vorkommen. Und der Primfaktor 2 kann hoechstens zweimal vorkommen.

Das Kriterium von Korselt muss man dementsprechend anpassen, ist aber nicht schwer, das kannst du auch selber :)

LG Felix


Bezug
                                                
Bezug
'schwacher' kleiner Fermat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Di 20.08.2013
Autor: wauwau

Da n= 24 ebenfalls Lösung ist, kann der Primfaktor 2 von n auch mehr als 2 mal vorkommen...
Irgendetwas stimmt noch immer nicht?

Bezug
                                                        
Bezug
'schwacher' kleiner Fermat: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Di 20.08.2013
Autor: felixf

Moin,

> Da n= 24 ebenfalls Lösung ist, kann der Primfaktor 2 von n
> auch mehr als 2 mal vorkommen...
> Irgendetwas stimmt noch immer nicht?

ja, da ist noch ein Fehler drin. Er ist sehr einfach zu finden (hat mich ein paar Sekunden gekostet). Jetzt eine Aufgabe fuer dich: finde ihn selber :)

LG Felix


Bezug
                                                                
Bezug
'schwacher' kleiner Fermat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:50 Mi 21.08.2013
Autor: wauwau

Ich finde den Fehler leider nicht und habe auch einen elementaren "Beweis" warum [mm] $2^3$ [/mm] nicht in n vorkommen darf
sei $n=2^la$ mit $a$ ungerade und $l [mm] \ge [/mm] 3$, dann ist [mm] $(1+2^{l-2}a,n)=1$ [/mm]

es müsste also [mm] $(1+2^{l-2}a)^{2(n-1)} \equiv [/mm] 1 [mm] \mod [/mm] n$ gelten.
Nun ist aber
[mm] $(1+2^{l-2}a)^{2(n-1)} \equiv 1+2^{l-1}a(n-1) \mod 2^l \equiv 1-2^{l-1}a \not \equiv [/mm] 1 [mm] \mod 2^l$ [/mm]
daher auch nicht [mm] $\equiv [/mm] 1 [mm] \mod [/mm] n$

Wo ist mein Fehler, denn 24 ist ja doch eine Lösung.

Bezug
                                                                        
Bezug
'schwacher' kleiner Fermat: Antwort
Status: (Antwort) fertig Status 
Datum: 12:00 Mi 21.08.2013
Autor: felixf

Moin!

> Ich finde den Fehler leider nicht

Tipp: sind alle Sylow-UG zyklisch?

> und habe auch einen elementaren "Beweis" warum [mm]2^3[/mm] nicht in n
> vorkommen darf
>
>  sei [mm]n=2^la[/mm] mit [mm]a[/mm] ungerade und [mm]l \ge 3[/mm], dann ist
> [mm](1+2^{l-2}a,n)=1[/mm]
>
> es müsste also [mm](1+2^{l-2}a)^{2(n-1)} \equiv 1 \mod n[/mm]
> gelten.
>  Nun ist aber
>  [mm](1+2^{l-2}a)^{2(n-1)} \equiv 1+2^{l-1}a(n-1) \mod 2^l \equiv 1-2^{l-1}a \not \equiv 1 \mod 2^l[/mm]

Moment! Es ist doch $(1 + [mm] 2^{l-2} a)^{2 (n-1)} [/mm] = 1 + [mm] \binom{2 (n-1)}{1} 2^{l-2} [/mm] a + [mm] \binom{2 (n-1)}{2} 2^{2 l - 4} a^2 [/mm] + ...$, wobei die letzten Terme kongruent 0 modulo [mm] $2^l$ [/mm] sind. Jedoch muss der Term [mm] $\binom{2(n-1)}{2} 2^{2 l - 4} a^2$ [/mm] nicht kongruent zu 0 modulo [mm] $2^l$ [/mm] sein, denn $2 l - 4$ muss nicht [mm] $\ge [/mm] l$ sein. Das ist erst ab $l = 4$ der Fall.

Wenn also $l [mm] \ge [/mm] 4$ ist, dann funktioniert dein Argument. Ist dagegen $l = 3$, dann hast du noch den Term $(n - 1) (2 n - 3) [mm] 2^{2 l - 4} a^2$, [/mm] der kongruent zu $3 [mm] \cdot a^2 \cdot 2^{2 l - 4}$ [/mm] ist.

Im Fall $l = 3$ haben wir also $(1 + 2 [mm] a)^{2 (n-1)} \equiv [/mm] 1 - 4 a + 4 [mm] \cdot [/mm] 3 [mm] a^2 \equiv [/mm] 1 + 4 + 4 [mm] \equiv [/mm] 1 [mm] \pmod{8}$ [/mm] und alles ist in Ordnung.

Damit hast du nur gezeigt: [mm] $\ell \ge [/mm] 4$ geht nicht.

LG Felix


Bezug
                                                                                
Bezug
'schwacher' kleiner Fermat: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:45 Mi 21.08.2013
Autor: wauwau

Groschen ist gefallen.

Damit kann man folgendes geändertes Korselt Kriterium formulieren

Eine Zahl $n$ erfüllt genau dann das "abgeschwächte" Fermat Kriterium [mm] $a^{2(n-1)}\equiv [/mm] 1 [mm] \mod [/mm] n$ für alle $a$ mit $(a,n)$=1 wenn
1. Die Zahl die Form $2^lm$ hat mit $l [mm] \le [/mm] 3$ und $m$ quadratfrei
2. für jeden Primfaktor $p$ von $n$ gilt $p-1|2(n-1)$



Bezug
                                                                                        
Bezug
'schwacher' kleiner Fermat: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:38 Mi 21.08.2013
Autor: reverend

Hallo wauwau,

das sieht gut aus, bis auf eine kleine Ungenauigkeit:

> Damit kann man folgendes geändertes Korselt Kriterium
> formulieren

>

> Eine Zahl [mm]n[/mm] erfüllt genau dann das "abgeschwächte" Fermat
> Kriterium [mm]a^{2(n-1)}\equiv 1 \mod n[/mm] für alle [mm]a[/mm] mit [mm](a,n)[/mm]=1
> wenn
> 1. Die Zahl die Form [mm]2^lm[/mm] hat mit [mm]l \le 3[/mm] und [mm]m[/mm]
> quadratfrei

...und ungerade.

> 2. für jeden Primfaktor [mm]p[/mm] von [mm]n[/mm] gilt [mm]p-1|2(n-1)[/mm]

Grüße
reverend

Bezug
        
Bezug
'schwacher' kleiner Fermat: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Di 20.08.2013
Autor: wauwau

finde alle n, sodass für alle $a$ mit $(a,6)=1$
[mm] $a^{2.3^n} \equiv [/mm] 1 [mm] \mod 3^n$ [/mm] gilt, oder zeige, dass keine Lösung exisitiert.

Bezug
                
Bezug
'schwacher' kleiner Fermat: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 Di 20.08.2013
Autor: wauwau

ok wenn nach Fermat
[mm] $(a^3)^2 \equiv [/mm] 1 [mm] \mod [/mm] 3$
dann ist
[mm] $a^{2.3^n}=(a^{2.3})^{3^{n-1}} \equiv [/mm] 1 [mm] \mod 3^n$ [/mm]
ist also für alle n erfüllt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]