matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorieschwache Konvergenz; Normal-V
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Wahrscheinlichkeitstheorie" - schwache Konvergenz; Normal-V
schwache Konvergenz; Normal-V < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

schwache Konvergenz; Normal-V: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:24 Mo 09.07.2012
Autor: lustiger-Lurch


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo zusammen.

Der zentrale Grenzwertsatz besagt ja, dass für reelle u.i.v. Zufallsvariablen [mm]X_1,X_2,\ldots[/mm]  mit endlichem Erwartungswert [mm]\mu[/mm] und endlicher Varianz [mm]\sigma^2[/mm] die normierte Summe

[mm]\bruch{ \summe_{i=1}^{n}X_i - n \mu}{\wurzel{\sigma^2 n}}[/mm] schwach gegen die Standardnormalverteilung konvergiert.

Kann ich dann auch direkt sagen, dass [mm]\summe_{i=1}^{n}X_i[/mm] schwach gegen [mm]N\left ( n\mu,n\sigma^2 \right )[/mm] konvergiert?

Gibt es einen Satz, der dies besagt oder aus dem dies folgt?


Sind z.B. die [mm]X_i[/mm] u.i. Bernoulli-verteilt mit Parameter p. Dann folgt doch, dass [mm]\summe_{i=1}^{n}X_i[/mm] [mm]B(n,p)[/mm]-verteilt ist  (Binomial-verteilt mit Parametern n und p ).
Gilt dann, dass [mm]B(n,p)[/mm] schwach gegen [mm]N\left ( np,np(1-p) )[/mm] konvergiert?



Vielen Dank!


        
Bezug
schwache Konvergenz; Normal-V: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Mo 09.07.2012
Autor: luis52

Moin lustiger-Lurch,

[willkommenmr]

> Kann ich dann auch direkt sagen, dass [mm]\summe_{i=1}^{n}X_i[/mm]
> schwach gegen [mm]N\left ( n\mu,n\sigma^2 \right )[/mm]
> konvergiert?
>  
>

Nein, kannst du nicht. Was passiert denn mit der  [mm]N\left ( n\mu,n\sigma^2 \right )[/mm]-Verteilung fuer [mm] $n\to\infty$? [/mm] Ist das eine Verteilung mit [mm] $\operatorname{E}[X]=\infty=\operatorname{Var}[X]$? [/mm]

Was du sagen ist, dass [mm]\summe_{i=1}^{n}X_i[/mm]  *approximativ* normalverteilt ist. Das gilt insbesondere fuer die Binomialverteilung.

vg Luis



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]