matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenrelative Extrema
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Reelle Analysis mehrerer Veränderlichen" - relative Extrema
relative Extrema < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

relative Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:05 Sa 17.07.2010
Autor: marc1001

Aufgabe
[mm] w=f(x,y,z)=(x+2)^2+(x+1)^2+(y-1)(z-2)^2 [/mm]
Bestimme Lokale Extremstellen und Werte

[mm] f_x=2(x+y)+2(x+1) [/mm]
[mm] f_y=(z-2)^2 [/mm]
[mm] f_z=2(y-1)(z-2) [/mm]

Dann ist:
x=-1
z=2
y=1

[mm] f_x_x=4 [/mm] ;  [mm] f_x_y=2 ;f_x_z=0 [/mm]
[mm] f_y_x=0 [/mm]  ; [mm] f_y_y=0 ;f_y_z=2(z-2) [/mm]
[mm] f_z_x=0 ;f_z_y=2(z-2) [/mm] ; [mm] f_z_z=2(y-1) [/mm]



Wenn ich jetzt die Werte von x,y,z einsetze wäre [mm] \Delta=0 [/mm]
Gilt dann auch, das ein man hier nicht sagen kann ob ein  Extremwert vorliegt ??

        
Bezug
relative Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Sa 17.07.2010
Autor: MathePower

Hallo marc1001,

> [mm]w=f(x,y,z)=(x+2)^2+(x+1)^2+(y-1)(z-2)^2[/mm]
>  Bestimme Lokale Extremstellen und Werte
>  [mm]f_x=2(x+y)+2(x+1)[/mm]
>  [mm]f_y=(z-2)^2[/mm]
>  [mm]f_z=2(y-1)(z-2)[/mm]


Wenn f(x,y,z) so wie in der Aufgabenstellung angeben lautet,
dann stimmt [mm] f_{x} [/mm] nicht.


>  
> Dann ist:
>  x=-1
>  z=2
>  y=1
>  
> [mm]f_x_x=4[/mm] ;  [mm]f_x_y=2 ;f_x_z=0[/mm]
>  [mm]f_y_x=0[/mm]  ; [mm]f_y_y=0 ;f_y_z=2(z-2)[/mm]
>  
> [mm]f_z_x=0 ;f_z_y=2(z-2)[/mm] ; [mm]f_z_z=2(y-1)[/mm]
>  
>
>
> Wenn ich jetzt die Werte von x,y,z einsetze wäre [mm]\Delta=0[/mm]
> Gilt dann auch, das ein man hier nicht sagen kann ob ein  
> Extremwert vorliegt ??


Gruss
MathePower

Bezug
                
Bezug
relative Extrema: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 Sa 17.07.2010
Autor: marc1001

Aufgabe
w=f(x,y,z)=(x + y [mm] )^2+(x+1)^2+(y-1)(z-2)^2 [/mm]

Sorry

Bezug
                        
Bezug
relative Extrema: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 Sa 17.07.2010
Autor: MathePower

Hallo marc1001,

> w=f(x,y,z)=(x + y [mm])^2+(x+1)^2+(y-1)(z-2)^2[/mm]
>  Sorry


Dann stimmt [mm] f_{y} [/mm] nicht, aber der Kandidat für
das mögliche Extrema ist der richtige.

Nun, da die Hesse-Matrix positiv semidefinit ist,
muß der Charakter dieses Kandidaten auf anderem
Wege ermittelt werden.


Gruss
MathePower

Bezug
                                
Bezug
relative Extrema: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:54 Sa 17.07.2010
Autor: marc1001


Oh ja, [mm] f_y=(Z-2)^2+2(x+y) [/mm]

Aber ändert zum Glück nichts am Ergebnis.


Mit [mm] \delta [/mm] = 0 ist die Aufgabe glaub ich auch beantwortet.
Weitere Untersuchung für diesen Fall haben wie nie gemacht.

Aber rein aus Interesse. Wie würde ich jetzt weiter machen?

Gruß Marc


Bezug
                                        
Bezug
relative Extrema: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 19.07.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]